使用Kohya_ss训练Stable Diffusion Lora

这篇具有很好参考价值的文章主要介绍了使用Kohya_ss训练Stable Diffusion Lora。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Stable Diffusion模型微调方法

Stable Diffusion主要有 4 种方式:Dreambooth, LoRA, Textual Inversion, Hypernetworks。

Textual Inversion (也称为 Embedding),它实际上并没有修改原始的 Diffusion 模型, 而是通过深度学习找到了和你想要的形象一致的角色形象特征参数,通过这个小模型保存下来。这意味着,如果原模型里面这方面的训练缺失的,其实你很难通过嵌入让它“学会”,它并不能教会 Diffusion 模型渲染其没有见过的图像内容。

Dreambooth 是对整个神经网络所有层权重进行调整,会将输入的图像训练进 Stable Diffusion 模型,它的本质是先复制了源模型,在源模型的基础上做了微调(fine tunning)并独立形成了一个新模型,在它的基本上可以做任何事情。缺点是,训练它需要大量 VRAM, 目前经过调优后可以在 16GB 显存下完成训练。

LoRA (Low-Rank Adaptation of Large Language Models) 也是使用少量图片,但是它是训练单独的特定网络层的权重,是向原有的模型中插入新的网络层,这样就避免了去修改原有的模型参数,从而避免将整个模型进行拷贝的情况,同时其也优化了插入层的参数量,最终实现了一种很轻量化的模型调校方法, LoRA 生成的模型较小,训练速度快, 推理时需要 LoRA 模型+基础模型,LoRA 模型会替换基础模型的特定网络层,所以它的效果会依赖基础模型。

Hypernetworks 的训练原理与 LoRA 差不多,与 LoRA 不同的是,Hypernetwork 是一个单独的神经网络模型,该模型用于输出可以插入到原始 Diffusion 模型的中间层。 因此通过训练,我们将得到一个新的神经网络模型,该模型能够向原始 Diffusion 模型中插入合适的中间层及对应的参数,从而使输出图像与输入指令之间产生关联关系。

硬件配置

显卡选择建议:显存在10GB以上,也就是RTX3060等级以上的GPU。

准备训练数据

图片收集

  • 训练用的图片最少最少要准备10张。
  • 分辨率适中,勿收集极小图像。
  • 数据集需要统一的主题和风格的内容,图片不宜有复杂背景以及其他无关人物。
  • 图像人物尽量多角度,多表情,多姿势。
  • 凸显面部的图像数量比例稍微大点,全身照的图片数量比例稍微小点。

图片预处理

use deepbooru for caption,AI,stable diffusion

(1)裁切图片

下载图片后,要将训练图片裁切成512x512像素。你可以选择用SD WebUI自动裁切,或是手动裁切。

  1. 将要裁切的图片放到同一个目录下。
  2. 打开SD WebUI,进到Train → Preprocess images页面。
  3. 第一个字段Source directory填写原始图片的路径。
  4. 第二个字段Destination directory填写输出路径。
  5. Width和Height设置为512x512。
  6. 点击Preprocess ,图片即会自动裁切。在那之后原始图片就可以删除,只留下裁切后的图片。
(2)预先给图片上提示词(图片打标)

接着要给图片预先上提示词,这样AI才知道要学习哪些提示词。

  1. 启动SD WebUI,进入Train页面。
  2. 进入Preprocess页面,Source输入裁切图片的路径,Destination填处理后图片输出的路径。
  3. 接着勾选Create Flipped Copies,创建翻转图片提升训练数量。
  4. 然后用Stable Diffusion训练真实图片的勾选Use BLIP for caption;训练动漫人物改勾选Use DeepBooru for caption。
  5. 点击Preprocess,约几分钟后便会处理完成。输出的目录里面会含有每张图片对应的提示词txt档。
  6. 图片标注完成之后,会在图像文件夹里生成与图片同名的txt文件。点击打开txt文件,将觉得无关,多余的特征都给删除掉。
(3)提示词标签tag优化
  • 方法一:保留全部标签

不做删标处理, 直接用于训练。在训练画风,或想省事快速训练人物模型时使用。需要输较多tag 来调用、训练时需把epoch训练轮次调高,导致训练时间变长。

  • 方法二:删除部分标签

比如训练某个特定角色,要保留某特征作为其自带特征,那么就要将其绑定标签删除。

需要删掉的标签:

如人物特征 long hair,blue eyes 这类。

不需要删掉的标签:

如人物动作 stand,run 这类,人物表情 smile,open mouth 这类,背景 simple background,white background 这类,画幅位置等 full body,upper body,close up 这类。

添加触发词(可选):

整理每个图片的标签,每个图片对应的标签第一句加上你要训练的trigger word(触发词),比如我要叫做qibaishi,就打开每一个tag文件(txt)文件,在最前面加入qibaishi这个关键词。

安装kohya_ss

环境准备

安装 Python 3.10,git

拉取代码

git clone https://github.com/bmaltais/kohya_ss

进入kohya_ss目录

cd kohya_ss

运行设置脚本

.\setup.bat

启动GUI

gui.bat

允许远程访问

gui.bat --listen 0.0.0.0 --server_port 7860 —headless

配置路径

需要配置以下三个目录:

  • image folder:存放训练集
  • logging folder:存放日志文件
  • output folder:存放训练过的模型

首先在image文件夹中新建一个名为100_xxxx的文件夹,100用来表示单张图片训练100次。然后将之前标注好的训练数据都放入文件夹中。

详细的配置如下:

use deepbooru for caption,AI,stable diffusion
​​​​​​​

use deepbooru for caption,AI,stable diffusion

配置训练参数:
use deepbooru for caption,AI,stable diffusion

kohya_ss提供了很多可以调节的参数,比如batchsize,learning rate, optimizer等等。可以根据自己实际情况进行配置。 

参数说明:

  • train_batch_size:训练批处理大小,指定同时训练图像的数量,默认值1,数值越大,训练时间越短,消耗内存越多。
  • Number of CPU threads per core:训练期间每个CPU核心的线程数。基本上,数字越高,效率越高,但有必要根据规格调整设置。
  • epoch:训练周期,假设想通过10次阅读50张图片来学习。在这种情况下,1个周期是50x10=500个训练。如果是2个周期,这将重复两次,因此它将是500x2=1000次学习。对于LoRA来说,2-3个时期的学习就足够了
  • Save every N epochs:每隔N个周期保存一次,如果不需要创建中间LoRA,将值设置为与“Epoch”相同。
  • Mixed precision:指定训练期间权重数据的混合精度类型。权重数据最初以32位为单位,但如有必要,通过混合16位单位数据进行学习将节省大量内存并加快速度。fp16是精度为其一半的数据格式,bf16是设计用于处理与32位数据相同的数字宽度的数据格式。可以在fp16上获得足够高的准确度。
  • Save precision:指定要保存在LoRA文件中的权重数据的类型。float为32位,fp16和bf16为16位单元。默认值为fp16。
  • Learning rate:学习率,稍微改变权重,以融入更多的给定图片。默认值为0.0001。
  • LR Scheduler:调度器是关于如何改变学习速率的设置,默认值为cosine。

LR Scheduler取值说明:

  • adafactor:一边学习,一边根据情况自动调整学习率以保存VRAM
  • constant:学习率从头到尾都没有变化
  • constant_with_warmup:从0的学习率开始,在热身时逐渐向学习率的设定值增加,在主学习时使用学习率的设置值。
  • cosine:在绘制余弦曲线时,逐渐将学习率降低到0
  • cosine _with_restarts:多次重复余弦
  • linear:线性,从学习率设置开始,并向0线性下降
  • polynomial:多项式,与线性行为相同,但减少起来有点复杂

完整的训练参数参考:

LoRA training parameters · bmaltais/kohya_ss Wiki · GitHubContribute to bmaltais/kohya_ss development by creating an account on GitHub.https://github.com/bmaltais/kohya_ss/wiki/LoRA-training-parameters

适配Intel显卡

kohya_ss最新版本在Linux/WSL上添加Intel ARC GPU支持与IPEX支持

  • Mixed precision选择BF16
  • Optimizer选择AdamW(或任何其他非8位)
  • CrossAttention选择SDPA

use deepbooru for caption,AI,stable diffusion

use deepbooru for caption,AI,stable diffusion

运行setup.sh:

./setup.sh --use-ipex

运行gui.sh:文章来源地址https://www.toymoban.com/news/detail-819086.html

./gui.sh --use-ipex

到了这里,关于使用Kohya_ss训练Stable Diffusion Lora的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Stable Diffusion:使用自己的数据集微调训练LoRA模型

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理 专栏或我的个人主页查看 基于DETR的人脸伪装检测 YOLOv7训练自己的数据集(口罩检测) YOLOv8训练自己的数据集(足球检测) YOLOv5:TensorRT加速YOLOv5模型推理 YOLOv5:I

    2024年02月12日
    浏览(84)
  • Stable Diffusion 使用lora-scripts WebUI训练LoRA模型

    如果对代码使用有困难的小伙伴可以直接使用WebUI版的LoRA模块进行训练操作。不管是训练人物,场景,风格,还是服装都是一套通用的模式,仅仅是使用不同的数据集得到的结果不同。 使用 git clone --recurse-submodules https://gi

    2024年02月17日
    浏览(51)
  • 使用您自己的计算机训练 Stable Diffusion 和 Bloom (175B) 等模型

    在我们最近的几篇文章中,我们一直在提到围绕大型语言和生成 AI 模型的炒作,以及如何减少推理和训练时间。随着我们的用户开始使用这些模型并对其进行微调,他们自然希望微调和部署包含数千亿参数的模型,以提高其特定用例的性能。 通常,这是一项要求非常高的任

    2024年01月16日
    浏览(34)
  • 保姆级教程:从0到1使用Stable Diffusion XL训练LoRA模型 |【人人都是算法专家】

    Rocky Ding 公众号:WeThinkIn 【人人都是算法专家】栏目专注于分享Rocky在AI行业中对业务/竞赛/研究/产品维度的思考与感悟。欢迎大家一起交流学习💪 大家好,我是Rocky。 Rocky在知乎上持续撰写Stable Diffusion XL全方位的解析文章: 深入浅出完整解析Stable Diffusion XL(SDXL)核心基础

    2024年02月09日
    浏览(52)
  • stable diffusion(Lora的训练)

    以坤坤为例,上网随便找了几个坤坤的人脸图像,作为训练的数据集  建议看一遍教程,虽然这个up主好像不是很专业的样子,不过流程差不多是这样的,重点关注一下虚拟环境搭建完之后,在终端选择配置的操作,就是一堆yes no,的选项,跟着视频来就行了。 本地找个训练

    2023年04月12日
    浏览(101)
  • Stable diffusion LoRA 训练过程

    1、使用diffusers-0.14.0, stabel-diffusion 模型 v-1.5版本 下载diffusers-0.14.0 并解压,新建文件test.py, 写入以下: import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained(\\\"./stable-diffusion-v1-5\\\") pipe = pipe.to(\\\"cuda\\\") prompt = \\\"a photo of an astronaut riding a horse on mars\\\" image = pi

    2024年02月16日
    浏览(55)
  • Stable Diffusion训练Lora模型

    以下内容参考:https://www.bilibili.com/video/BV1Qk4y1E7nv/?spm_id_from=333.337.search-card.all.clickvd_source=3969f30b089463e19db0cc5e8fe4583a 第一步,准备训练要使用的图片,即优质的图片 第二部,为这些图片打标,即精准的tag 数量建议20-50张,最多100张图片 不好的图片:模糊的,动作扭曲的,脸部被

    2024年02月12日
    浏览(70)
  • Stable Diffusion XL训练LoRA

    主要包括SDXL模型结构,从0到1训练SDXL以及LoRA教程,从0到1搭建SDXL推理流程。  【一】SDXL训练初识 Stable Diffusion系列模型的训练主要分成一下几个步骤,Stable Diffusion XL也不例外: 训练集制作:数据质量评估,标签梳理,数据清洗,数据标注,标签清洗,数据增强等。 训练文

    2024年02月07日
    浏览(44)
  • stable diffusion模型训练时数据量

    文生图模型之Stable Diffusion - 知乎 通向AGI之路码字真心不易,求点赞! https://zhuanlan.zhihu.com/p/6424968622022年可谓是 AIGC(AI Generated Content)元年,上半年有文生图大模型DALL-E2和Stable Diffusion,下半年有OpenAI的文本对话大模型Ch… https://zhuanlan.zhihu.com/p/617134893 【stable-diffusion企业级教

    2024年02月04日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包