10个常用python自动化脚本

这篇具有很好参考价值的文章主要介绍了10个常用python自动化脚本。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,Python凭借其简单和通用性,能够为解决每天重复同样的工作提供最佳方案。本文将探索10个Python脚本,这些脚本可以帮助自动化完成任务,提高工作效率。无论是开发者、数据分析师还是仅仅想简化工作流程的普通用户,这些脚本都能提供帮助。

1. 自动化文件管理

1.1 排序目录中的文件

# Python脚本,用于根据文件扩展名对目录中的文件进行排序
import os
from shutil import move

def sort_files(directory_path):
  for filename in os.listdir(directory_path):
    if os.path.isfile(os.path.join(directory_path, filename)):
      file_extension = filename.split('.')[-1]
      destination_directory = os.path.join(directory_path, file_extension)  
      if not os.path.exists(destination_directory):
        os.makedirs(destination_directory)
      move(os.path.join(directory_path, filename), os.path.join(destination_directory, filename))

根据文件扩展名将文件分类到子目录中,来组织目录中的文件。它识别文件扩展名并将文件移动到适当的子目录中,这对于整理下载文件夹或组织特定项目的文件非常有用。 

1.2 删除空文件夹

# Python脚本,用于删除目录中的空文件夹
import os

def remove_empty_folders(directory_path):
  for root, dirs, files in os.walk(directory_path, topdown=False):
    for folder in dirs:
      folder_path = os.path.join(root, folder)
      if not os.listdir(folder_path):
        os.rmdir(folder_path)

脚本用于在指定目录中搜索和删除空文件夹,维护干净整洁的文件夹结构,特别是在处理大量数据集时。

1.3 批量重命名文件

# Python脚本,用于批量重命名目录中的文件
import os

def rename_files(directory_path, old_name, new_name):
  for filename in os.listdir(directory_path):
    if old_name in filename:
      new_filename = filename.replace(old_name, new_name)
      os.rename(os.path.join(directory_path, filename), os.path.join(directory_path, new_filename))

脚本允许同时批量重命名目录中的多个文件。它以旧名称和新名称作为输入,并将所有匹配的文件中的旧名称替换为新名称。

2. 使用Python进行网页抓取

2.1 从网站中提取数据

# 使用Python进行网页抓取的脚本,以从网站中提取数据
import requests
from bs4 import BeautifulSoup

def scrape_data(url):
  response = requests.get(url)
  soup = BeautifulSoup(response.text, 'html.parser')
  # 在此处编写代码,从网站中提取相关数据

脚本利用requests和BeautifulSoup库来抓取网站的数据。它获取网页内容并使用BeautifulSoup解析HTML,可以自定义该脚本以提取诸如标题、产品信息或价格等特定数据。 

2.2 批量下载图片

# Python脚本,用于从网站批量下载图片
import requests

def download_images(url, save_directory):
  response = requests.get(url)
  if response.status_code == 200:
    images = response.json() # 假设API返回图片URL的JSON数组
    for index, image_url in enumerate(images):
      image_response = requests.get(image_url)
      if image_response.status_code == 200:
        with open(f"{save_directory}/image_{index}.jpg", "wb") as f:
          f.write(image_response.content)

脚本旨在从网站批量下载图片,它假设该网站提供一个返回图片URL数组的JSON API。该脚本然后遍历这些URL并下载图片,将其保存到指定的目录中。 

2.3 自动提交表单

# Python脚本,用于自动在网站上提交表单
import requests

def submit_form(url, form_data):
  response = requests.post(url, data=form_data)
  if response.status_code == 200:
    # 在此处编写代码以处理表单提交后的响应

脚本使用POST请求以表单数据自动在网站上提交表单,可以通过提供URL和要提交的表单数据来自定义该脚本。

3. 文本处理和操作

3.1 统计文本文件中的单词数

# Python脚本,用于统计文本文件中的单词数

def count_words(file_path):
  with open(file_path, 'r') as f:
    text = f.read()
    word_count = len(text.split())
  return word_count

脚本读取文本文件并统计其中包含的单词数,可以用于快速分析文本文档的内容,或跟踪写作项目中的字数。

3.2 查找和替换文本

# Python脚本,用于在文件中查找和替换文本

def find_replace(file_path, search_text, replace_text):
  with open(file_path, 'r') as f:
    text = f.read()
    modified_text = text.replace(search_text, replace_text)
  with open(file_path, 'w') as f:    
    f.write(modified_text)

脚本在文件中搜索特定文本并将其替换为所需文本,它对批量替换大型文本文件中的某些短语或更正错误非常有用。

3.3 生成随机文本

# Python脚本,用于生成随机文本

import random
import string

def generate_random_text(length):
  letters = string.ascii_letters + string.digits + string.punctuation  
  random_text = ''.join(random.choice(letters) for i in range(length))
  return random_text

脚本生成指定长度的随机文本,可用于测试和模拟目的,甚至作为创作的随机内容源。

4. 自动发送电子邮件

4.1 发送个性化电子邮件

# Python脚本,用于向收件人列表发送个性化电子邮件

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart

def send_personalized_email(sender_email, sender_password, recipients, subject, body):

  server = smtplib.SMTP('smtp.gmail.com', 587)
  server.starttls()
  server.login(sender_email, sender_password)

  for recipient_email in recipients:
    message = MIMEMultipart()  
    message['From'] = sender_email
    message['To'] = recipient_email
    message['Subject'] = subject  
    message.attach(MIMEText(body, 'plain'))
    server.sendmail(sender_email, recipient_email, message.as_string())

  server.quit()

脚本能够向收件人列表发送个性化电子邮件,可以自定义发件人的电子邮件、密码、主题、正文以及收件人列表。请注意,出于安全考虑,使用Gmail时应使用应用专用密码。

4.2 发送带附件的电子邮件

# Python脚本,用于发送带有附件的电子邮件

import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders

def send_email_with_attachment(sender_email, sender_password, recipient_email, subject, body, file_path):

  server = smtplib.SMTP('smtp.gmail.com', 587)
  server.starttls()
  server.login(sender_email, sender_password)

  message = MIMEMultipart()
  message['From'] = sender_email
  message['To'] = recipient_email
  message['Subject'] = subject

  message.attach(MIMEText(body, 'plain'))

  with open(file_path, "rb") as attachment:
    part = MIMEBase('application', 'octet-stream')
    part.set_payload(attachment.read())
    encoders.encode_base64(part)
    part.add_header('Content-Disposition', f"attachment; filename= {file_path}")
    message.attach(part)

  server.sendmail(sender_email, recipient_email, message.as_string())
  server.quit()

脚本允许发送带有附件的电子邮件,只需提供发件人的电子邮件、密码、收件人的电子邮件、主题、正文以及要附加的文件的路径即可。

4.3 自动电子邮件提醒

# Python脚本,用于发送自动电子邮件提醒

import smtplib  
from email.mime.text import MIMEText
from datetime import datetime, timedelta

def send_reminder_email(sender_email, sender_password, recipient_email, subject, body, reminder_date):

  server = smtplib.SMTP('smtp.gmail.com', 587)
  server.starttls()
  server.login(sender_email, sender_password)

  now = datetime.now()
  reminder_date = datetime.strptime(reminder_date, '%Y-%m-%d')

  if now.date() == reminder_date.date():

    message = MIMEText(body, 'plain')
    message['From'] = sender_email  
    message['To'] = recipient_email
    message['Subject'] = subject

    server.sendmail(sender_email, recipient_email, message.as_string())

  server.quit()

脚本基于指定日期发送自动电子邮件提醒,对设置重要任务或事件的提醒非常有用,确保不会错过最后期限。

5. 自动化Excel电子表格

5.1 读写Excel

# Python脚本,用于读写Excel电子表格中的数据

import pandas as pd

def read_excel(file_path):
  df = pd.read_excel(file_path)
  return df

def write_to_excel(data, file_path):
  df = pd.DataFrame(data)
  df.to_excel(file_path, index=False) 

脚本使用pandas库从Excel电子表格中读取数据并将数据写入新的Excel文件。它允许以编程方式处理Excel文件,从而提高数据操作和分析的效率。

5.2 数据分析和可视化

# 使用pandas和matplotlib进行数据分析和可视化的Python脚本

import pandas as pd
import matplotlib.pyplot as plt

def analyze_and_visualize_data(data):

  # 在此处编写数据分析和可视化的代码

  pass

脚本使用pandas和matplotlib库执行数据分析和可视化,能够探索数据集、洞察数据以及创建数据的可视化表示。

5.3 合并多个表格

# Python脚本,用于将多个Excel表合并为一个表

import pandas as pd

def merge_sheets(file_path, output_file_path):

  xls = pd.ExcelFile(file_path)
  df = pd.DataFrame()

  for sheet_name in xls.sheet_names:
    sheet_df = pd.read_excel(xls, sheet_name)
    df = df.append(sheet_df)
  
  df.to_excel(output_file_path, index=False)

脚本合并Excel文件中多个表的数据到一个表中,当数据分布在不同的表中,但想进行汇总以进行进一步分析时,会很方便。

6. 与数据库交互

6.1 连接数据库

# Python脚本,用于连接数据库并执行查询

import sqlite3

def connect_to_database(database_path):
  connection = sqlite3.connect(database_path)
  return connection

def execute_query(connection, query):
  cursor = connection.cursor()
  cursor.execute(query)
  result = cursor.fetchall()
  return result

脚本允许连接SQLite数据库并执行查询,使用适当的Python数据库驱动程序,可以将其修改为使用其他数据库管理系统(如MySQL或PostgreSQL)。

6.2 执行SQL查询

# Python脚本,用于在数据库上执行SQL查询

import sqlite3

def execute_query(connection, query):

  cursor = connection.cursor()
  cursor.execute(query)  
  result = cursor.fetchall()

  return result

脚本是一个通用函数,用于在数据库上执行SQL查询。可以将查询作为参数传递给该函数以及数据库连接对象,它将返回查询的结果。

6.3 数据备份和恢复

import shutil

def backup_database(database_path, backup_directory):
  shutil.copy(database_path, backup_directory) 

def restore_database(backup_path, database_directory):
  shutil.copy(backup_path, database_directory)  

脚本允许创建数据库的备份并在需要时进行恢复,是防止宝贵数据意外丢失的预防措施。

7. 自动化系统任务

7.1 管理系统进程

# Python脚本,用于管理系统进程

import psutil

def get_running_processes():

  return [p.info for p in psutil.process_iter(['pid', 'name', 'username'])]

def kill_process_by_name(process_name):

  for p in psutil.process_iter(['pid', 'name', 'username']):
    if p.info['name'] == process_name:
      p.kill()

脚本使用psutil库来管理系统进程,允许检索运行进程的列表并通过名称终止指定的进程。

7.2 使用Cron安排任务

# Python脚本,用于使用cron语法安排任务

from crontab import CronTab

def schedule_task(command, schedule):

  cron = CronTab(user=True)
  job = cron.new(command=command)
  job.setall(schedule)
  cron.write()

脚本利用crontab库使用cron语法来调度任务,支持以正则间隔或特定时间自动执行特定命令。

7.3 监控磁盘空间

# Python脚本,用于监控磁盘空间并在空间不足时发送警告

import psutil

def check_disk_space(minimum_threshold_gb):

  disk = psutil.disk_usage('/')
  free_space_gb = disk.free / (2**30) # 将字节转换为GB

  if free_space_gb < minimum_threshold_gb:
    
    # 在此处编写代码以发送警告(电子邮件、通知等)

    pass

脚本监视系统上的可用磁盘空间,如果低于指定阈值则发送警告,这对于磁盘空间的积极管理和避免因磁盘空间不足导致的数据丢失非常有用。

8. 网络自动化

8.1 检查网站状态

# Python脚本,用于检查网站状态

import requests

def check_website_status(url):

  response = requests.get(url)

  if response.status_code == 200:

    # 在此处编写代码以处理成功的响应

  else:

    # 在此处编写代码以处理不成功的响应

脚本通过向提供的URL发送HTTP GET请求来检查网站的状态,有助于监控网站的可用性及其响应代码。

8.2 自动化FTP传输

# Python脚本,用于自动化FTP文件传输

from ftplib import FTP  

def ftp_file_transfer(host, username, password, local_file_path, remote_file_path):

  with FTP(host) as ftp:
    ftp.login(user=username, passwd=password)
    with open(local_file_path, 'rb') as f:
      ftp.storbinary(f'STOR {remote_file_path}', f)

脚本使用FTP协议自动化文件传输,连接到FTP服务器,使用提供的凭据登录,并将本地文件上传到指定的远程位置。

8.3 网络设备配置

# Python脚本,用于自动化网络设备配置

from netmiko import ConnectHandler

def configure_network_device(host, username, password, configuration_commands):

  device = {
    'device_type': 'cisco_ios',  
    'host': host,
    'username': username,
    'password': password,
  }

  with ConnectHandler(device) as net_connect:
    net_connect.send_config_set(configuration_commands)

脚本使用netmiko库自动配置网络设备,如思科路由器和交换机,可以提供一系列配置命令,脚本将在目标设备上执行它们。

9. 数据清理和转换

9.1 从数据中删除重复项

# Python脚本,用于从数据中删除重复项

import pandas as pd

def remove_duplicates(data_frame):

  cleaned_data = data_frame.drop_duplicates()

  return cleaned_data

脚本使用pandas从数据集中删除重复行,这是确保数据完整性和提高数据分析的简单有效的方法。

9.2 数据规范化

# 数据规范化的Python脚本

import pandas as pd

def normalize_data(data_frame):

  normalized_data = (data_frame - data_frame.min()) / (data_frame.max() - data_frame.min())

  return normalized_data

脚本使用最小-最大规范化技术对数据进行规范化,将数据集中的值缩放到0到1范围内,使比较不同特征更容易。

9.3 处理缺失值

# Python脚本,用于处理数据中的缺失值

import pandas as pd

def handle_missing_values(data_frame):

  filled_data = data_frame.fillna(method='ffill')

  return filled_data

脚本使用pandas处理数据集中的缺失值,使用向前填充方法用前一个非缺失值填充缺失值。

10. 自动化PDF操作

10.1 从PDF中提取文本

# Python脚本,用于从PDF中提取文本

import PyPDF2

def extract_text_from_pdf(file_path):

  with open(file_path, 'rb') as f:
    pdf_reader = PyPDF2.PdfFileReader(f)
    text = ''
    for page_num in range(pdf_reader.numPages):
      page = pdf_reader.getPage(page_num)
      text += page.extractText()

  return text

脚本使用PyPDF2库从PDF文件中提取文本,读取PDF的每一页并将提取的文本编译成一个字符串。

10.2 合并多个PDF

# Python脚本,用于将多个PDF合并为一个PDF

import PyPDF2

def merge_pdfs(input_paths, output_path):

  pdf_merger = PyPDF2.PdfMerger()

  for path in input_paths:
    with open(path, 'rb') as f: 
      pdf_merger.append(f)

  with open(output_path, 'wb') as f:
    pdf_merger.write(f)

脚本将多个PDF文件合并为一个PDF文档,这对于合并独立的PDF报告、演示文稿或其他文档到一个连贯的文件很有用。

10.3 添加密码保护

# Python脚本,用于为PDF添加密码保护

import PyPDF2

def add_password_protection(input_path, output_path, password):

  with open(input_path, 'rb') as f:
    pdf_reader = PyPDF2.PdfFileReader(f)
    pdf_writer = PyPDF2.PdfFileWriter()
    for page_num in range(pdf_reader.numPages):
      page = pdf_reader.getPage(page_num)
      pdf_writer.addPage(page)
    pdf_writer.encrypt(password)
    with open(output_path, 'wb') as output_file:
      pdf_writer.write(output_file)

脚本为PDF文件添加密码保护,使用密码加密PDF,确保只有那些知道正确密码的人才能访问内容。

综上所述,本文探索了不同领域的10个Python脚本,这些脚本可以完成自动化过程。从网页抓取和网络自动化到机器学习和物联网设备控制,Python的通用性允许高效地自动化广泛的过程。

自动化不仅可以节省时间和精力,还可以减少错误的风险,提高整体效率。通过自定义和扩展这些脚本,可以创建定制的自动化解决方案以满足特定需求。文章来源地址https://www.toymoban.com/news/detail-819203.html

到了这里,关于10个常用python自动化脚本的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 10个Python自动化脚本助你工作更加高效

    所以,请你把这篇文章放在你的收藏清单上,以备不时之需,在IT行业里,程序员的学习永无止境…… 现在,让我们开始吧。   使用这个很棒的自动化脚本,可以帮助把图像处理的更好,你可以像在 Photoshop 中一样编辑它们。 该脚本使用流行的是 Pillow 模块 通过使用以下自动

    2024年02月06日
    浏览(63)
  • 10个Python脚本来自动化你的日常任务

    在这个自动化时代,我们有很多重复无聊的工作要做。想想这些你不再需要一次又一次地做的无聊的事情,让它自动化,让你的生活更轻松。那么在本文中,我将向您介绍 10 个 Python 自动化脚本,以使你的工作更加自动化,生活更加轻松。因此,没有更多的重复任务将这篇文

    2024年01月19日
    浏览(45)
  • Shell脚本——流量探测(自动化运维)

    目的    自动  捕获 指定IP或端口 的流量 生成日志,实现 流量 探测功能 准备    Root 用户权限下才能运行tcpdump脚本 优势   Liunx系统自带,无需安装其他组件,捕获准确度高 缺点   不能同时检测多个IP流量,效率低 重点         日志文件   touch  /home/node1/scripts/t

    2024年02月16日
    浏览(42)
  • 自动化运维:Ansible脚本之playbook剧本

    目录 一、理论 1.playbooks  2.YAML 3.使用ansible批量安装apache服务 4.定义、引用变量 5.指定远程主机sudo切换用户 6.when条件判断 7.迭代 8.Templates 模块 9.tags 模块      10.Roles 模块      二、实验 1.使用ansible批量安装apache服务 2.定义、引用变量 3.指定远程主机sudo切换用户 4.when条件判

    2024年02月11日
    浏览(49)
  • shell脚本——服务器巡检(自动化运维)

     目的   自动 获取集群内 多个主机 的内存、磁盘、cpu等信息 生成日志  准备    VMware虚拟主机IP在同一个网段(互相能ping通)             虚拟主机都有公钥免登录            修改主机IP  vi/etc/sysconfig/netwoek-scripts/ifcfg-ens160            设置主机名 hostnamectl set-ho

    2024年02月15日
    浏览(55)
  • 云计算的自动化与脚本:实现高效运维

    云计算是一种基于互联网和服务器集群的计算模式,它允许用户在需要时从任何地方访问计算资源。自动化和脚本在云计算中发挥着至关重要的作用,因为它们可以帮助管理员更高效地运行和维护云计算环境。在本文中,我们将探讨云计算自动化和脚本的核心概念、算法原理

    2024年04月12日
    浏览(45)
  • 自动化测试常用脚本语言有哪些?

    在自动化测试中,常用的脚本语言包括: 1. Python:Python是一个简洁、易读且功能强大的脚本语言,广泛应用于自动化测试领域。它具有丰富的测试框架和库,可以用于Web、移动应用和API等各种类型的测试。 2. Java:Java是一种面向对象的编程语言,具有跨平台的特性。在自动化

    2024年02月09日
    浏览(49)
  • [自动化运维工具] Ansible的简单介绍与常用模块详解

    自动化运维工具,也叫 机器管理工具 。 可以实现 批量管理多台(成百上千)主机 ,是应用级别的 跨主机编排工具 。 无客户端agent存在,不需要在被控制的节点上安装额外的客户端应用 通过 ssh协议 与被控制节点通信 基于模块工作的,可以通过模块实现在被控制节点上执

    2024年02月05日
    浏览(83)
  • python-自动化篇-运维-网络-IP

    IP地址规划是网络设计中非常重要的一个环节,规划的好坏会直接影响路由协议算法的效率,包括网络性能、可扩展性等方面,在这个过程当中,免不了要计算大量的IP地址,包括网段、网络掩码、广播地址、子网数、IP类型等。 Python提供了一个强大的第三方模块IPy (https://g

    2024年02月19日
    浏览(46)
  • python自动化运维管理拓扑

    目录 1、简介 2、实验环境 3、拓扑图 4、需求及其代码 4.1、测试连通性 4.2、远程登陆 4.3、配置loopback 4.4、监控内存使用率 4.5、自动化巡检内存使用率 4.6、自动化配置snmp服务 4.7、提取分析字符串 🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领

    2024年01月23日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包