接口自动化测试框架开发(pytest+allure+aiohttp+ 用例自动生成)

这篇具有很好参考价值的文章主要介绍了接口自动化测试框架开发(pytest+allure+aiohttp+ 用例自动生成)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

近期准备优先做接口测试的覆盖,为此需要开发一个测试框架,经过思考,这次依然想做点儿不一样的东西。

接口测试是比较讲究效率的,测试人员会希望很快能得到结果反馈,然而接口的数量一般都很多,而且会越来越多,所以提高执行效率很有必要
接口测试的用例其实也可以用来兼做简单的压力测试,而压力测试需要并发
接口测试的用例有很多重复的东西,测试人员应该只需要关注接口测试的设计,这些重复劳动最好自动化来做
pytest和allure太好用了,新框架要集成它们
接口测试的用例应该尽量简洁,最好用yaml,这样数据能直接映射为请求数据,写起用例来跟做填空题一样,便于向没有自动化经验的成员推广 加上我对Python的协程很感兴趣,也学了一段时间,一直希望学以致用,所以http请求我决定用aiohttp来实现。 但是pytest是不支持事件循环的,如果想把它们结合还需要一番功夫。于是继续思考,思考的结果是其实我可以把整个事情分为两部分。 第一部分,读取yaml测试用例,http请求测试接口,收集测试数据。 第二部分,根据测试数据,动态生成pytest认可的测试用例,然后执行,生成测试报告。 这样一来,两者就能完美结合了,也完美符合我所做的设想。想法既定,接着 就是实现了。

第一部分(整个过程都要求是异步非阻塞的)

读取yaml测试用例

一份简单的用例模板我是这样设计的,这样的好处是,参数名和aiohttp.ClientSession().request(method,url,**kwargs)是直接对应上的,我可以不费力气的直接传给请求方法,避免各种转换,简洁优雅,表达力又强。

args:
  - post
  - /xxx/add
kwargs:
  -
    caseName: 新增xxx
    data:
      name: ${gen_uid(10)}
validator:
  -
    json:
      successed: True

异步读取文件可以使用aiofiles这个第三方库,yaml_load是一个协程,可以保证主进程读取yaml测试用例时不被阻塞,通过await yaml_load()便能获取测试用例的数据

async def yaml_load(dir='', file=''):
    """
    异步读取yaml文件,并转义其中的特殊值
    :param file:
    :return:
    """
    if dir:
        file = os.path.join(dir, file)
    async with aiofiles.open(file, 'r', encoding='utf-8', errors='ignore') as f:
        data = await f.read()

    data = yaml.load(data)

    # 匹配函数调用形式的语法
    pattern_function = re.compile(r'^\${([A-Za-z_]+\w*\(.*\))}$')
    pattern_function2 = re.compile(r'^\${(.*)}$')
    # 匹配取默认值的语法
    pattern_function3 = re.compile(r'^\$\((.*)\)$')

    def my_iter(data):
        """
        递归测试用例,根据不同数据类型做相应处理,将模板语法转化为正常值
        :param data:
        :return:
        """
        if isinstance(data, (list, tuple)):
            for index, _data in enumerate(data):
                data[index] = my_iter(_data) or _data
        elif isinstance(data, dict):
            for k, v in data.items():
                data[k] = my_iter(v) or v
        elif isinstance(data, (str, bytes)):
            m = pattern_function.match(data)
            if not m:
                m = pattern_function2.match(data)
            if m:
                return eval(m.group(1))
            if not m:
                m = pattern_function3.match(data)
            if m:
                K, k = m.group(1).split(':')
                return bxmat.default_values.get(K).get(k)

            return data

    my_iter(data)

    return BXMDict(data)

可以看到,测试用例还支持一定的模板语法,如f u n c t i o n 、 {function}、function、(a:b)等,这能在很大程度上拓展测试人员用例编写的能力

http请求测试接口

http请求可以直接用aiohttp.ClientSession().request(method,url,**kwargs),http也是一个协程,可以保证网络请求时不被阻塞,通过await http()便可以拿到接口测试数据

async def http(domain, *args, **kwargs):
    """
    http请求处理器
    :param domain: 服务地址
    :param args:
    :param kwargs:
    :return:
    """
    method, api = args
    arguments = kwargs.get('data') or kwargs.get('params') or kwargs.get('json') or {}

    # kwargs中加入token
    kwargs.setdefault('headers', {}).update({'token': bxmat.token})
    # 拼接服务地址和api
    url = ''.join([domain, api])

    async with ClientSession() as session:
        async with session.request(method, url, **kwargs) as response:
            res = await response_handler(response)
            return {
                'response': res,
                'url': url,
                'arguments': arguments
            }

收集测试数据

协程的并发真的很快,这里为了避免服务响应不过来导致熔断,可以引入asyncio.Semaphore(num)来控制并发

async def entrace(test_cases, loop, semaphore=None):
    """
    http执行入口
    :param test_cases:
    :param semaphore:
    :return:
    """
    res = BXMDict()
    # 在CookieJar的update_cookies方法中,如果unsafe=False并且访问的是IP地址,客户端是不会更新cookie信息
    # 这就导致session不能正确处理登录态的问题
    # 所以这里使用的cookie_jar参数使用手动生成的CookieJar对象,并将其unsafe设置为True
    async with ClientSession(loop=loop, cookie_jar=CookieJar(unsafe=True), headers={'token': bxmat.token}) as session:
        await advertise_cms_login(session)
        if semaphore:
            async with semaphore:
                for test_case in test_cases:
                    data = await one(session, case_name=test_case)
                    res.setdefault(data.pop('case_dir'), BXMList()).append(data)
        else:
            for test_case in test_cases:
                data = await one(session, case_name=test_case)
                res.setdefault(data.pop('case_dir'), BXMList()).append(data)

        return res


async def one(session, case_dir='', case_name=''):
    """
    一份测试用例执行的全过程,包括读取.yml测试用例,执行http请求,返回请求结果
    所有操作都是异步非阻塞的
    :param session: session会话
    :param case_dir: 用例目录
    :param case_name: 用例名称
    :return:
    """
    project_name = case_name.split(os.sep)[1]
    domain = bxmat.url.get(project_name)
    test_data = await yaml_load(dir=case_dir, file=case_name)
    result = BXMDict({
        'case_dir': os.path.dirname(case_name),
        'api': test_data.args[1].replace('/', '_'),
    })
    if isinstance(test_data.kwargs, list):
        for index, each_data in enumerate(test_data.kwargs):
            step_name = each_data.pop('caseName')
            r = await http(session, domain, *test_data.args, **each_data)
            r.update({'case_name': step_name})
            result.setdefault('responses', BXMList()).append({
                'response': r,
                'validator': test_data.validator[index]
            })
    else:
        step_name = test_data.kwargs.pop('caseName')
        r = await http(session, domain, *test_data.args, **test_data.kwargs)
        r.update({'case_name': step_name})
        result.setdefault('responses', BXMList()).append({
            'response': r,
            'validator': test_data.validator
        })

    return result

事件循环负责执行协程并返回结果,在最后的结果收集中,我用测试用例目录来对结果进行了分类,这为接下来的自动生成pytest认可的测试用例打下了良好的基础

def main(test_cases):
    """
    事件循环主函数,负责所有接口请求的执行
    :param test_cases:
    :return:
    """
    loop = asyncio.get_event_loop()
    semaphore = asyncio.Semaphore(bxmat.semaphore)
    # 需要处理的任务
    # tasks = [asyncio.ensure_future(one(case_name=test_case, semaphore=semaphore)) for test_case in test_cases]
    task = loop.create_task(entrace(test_cases, loop, semaphore))
    # 将协程注册到事件循环,并启动事件循环
    try:
        # loop.run_until_complete(asyncio.gather(*tasks))
        loop.run_until_complete(task)
    finally:
        loop.close()

    return task.result()

第二部分

动态生成pytest认可的测试用例

首先说明下pytest的运行机制,pytest首先会在当前目录下找conftest.py文件,如果找到了,则先运行它,然后根据命令行参数去指定的目录下找test开头或结尾的.py文件,如果找到了,如果找到了,再分析fixture,如果有session或module类型的,并且参数autotest=True或标记了pytest.mark.usefixtures(a…),则先运行它们;再去依次找类、方法等,规则类似。大概就是这样一个过程。
可以看出,pytest测试运行起来的关键是,必须有至少一个被pytest发现机制认可的testxx.py文件,文件中有TestxxClass类,类中至少有一个def testxx(self)方法。
现在并没有任何pytest认可的测试文件,所以我的想法是先创建一个引导型的测试文件,它负责让pytest动起来。可以用pytest.skip()让其中的测试方法跳过。然后我们的目标是在pytest动起来之后,怎么动态生成用例,然后发现这些用例,执行这些用例,生成测试报告,一气呵成。

# test_bootstrap.py
import pytest

class TestStarter(object):

    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

我想到的是通过fixture,因为fixture有setup的能力,这样我通过定义一个scope为session的fixture,然后在TestStarter上面标记use,就可以在导入TestStarter之前预先处理一些事情,那么我把生成用例的操作放在这个fixture里就能完成目标了。

# test_bootstrap.py
import pytest

@pytest.mark.usefixtures('te', 'test_cases')
class TestStarter(object):

    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

pytest有个–rootdir参数,该fixture的核心目的就是,通过–rootdir获取到目标目录,找出里面的.yml测试文件,运行后获得测试数据,然后为每个目录创建一份testxx.py的测试文件,文件内容就是content变量的内容,然后把这些参数再传给pytest.main()方法执行测试用例的测试,也就是在pytest内部再运行了一个pytest!最后把生成的测试文件删除。注意该fixture要定义在conftest.py里面,因为pytest对于conftest中定义的内容有自发现能力,不需要额外导入。
 

# conftest.py
@pytest.fixture(scope='session')
def test_cases(request):
    """
    测试用例生成处理
    :param request:
    :return:
    """
    var = request.config.getoption("--rootdir")
    test_file = request.config.getoption("--tf")
    env = request.config.getoption("--te")
    cases = []
    if test_file:
        cases = [test_file]
    else:
        if os.path.isdir(var):
            for root, dirs, files in os.walk(var):
                if re.match(r'\w+', root):
                    if files:
                        cases.extend([os.path.join(root, file) for file in files if file.endswith('yml')])

    data = main(cases)

    content = """
import allure

from conftest import CaseMetaClass


@allure.feature('{}接口测试({}项目)')
class Test{}API(object, metaclass=CaseMetaClass):

    test_cases_data = {}
"""
    test_cases_files = []
    if os.path.isdir(var):
        for root, dirs, files in os.walk(var):
            if not ('.' in root or '__' in root):
                if files:
                    case_name = os.path.basename(root)
                    project_name = os.path.basename(os.path.dirname(root))
                    test_case_file = os.path.join(root, 'test_{}.py'.format(case_name))
                    with open(test_case_file, 'w', encoding='utf-8') as fw:
                        fw.write(content.format(case_name, project_name, case_name.title(), data.get(root)))
                    test_cases_files.append(test_case_file)

    if test_file:
        temp = os.path.dirname(test_file)
        py_file = os.path.join(temp, 'test_{}.py'.format(os.path.basename(temp)))
    else:
        py_file = var

    pytest.main([
        '-v',
        py_file,
        '--alluredir',
        'report',
        '--te',
        env,
        '--capture',
        'no',
        '--disable-warnings',
    ])

    for file in test_cases_files:
        os.remove(file)

    return test_cases_files

可以看到,测试文件中有一个TestxxAPI的类,它只有一个test_cases_data属性,并没有testxx方法,所以还不是被pytest认可的测试用例,根本运行不起来。那么它是怎么解决这个问题的呢?答案就是CaseMetaClass。

function_express = """
def {}(self, response, validata):
    with allure.step(response.pop('case_name')):
        validator(response,validata)"""


class CaseMetaClass(type):
    """
    根据接口调用的结果自动生成测试用例
    """

    def __new__(cls, name, bases, attrs):
        test_cases_data = attrs.pop('test_cases_data')
        for each in test_cases_data:
            api = each.pop('api')
            function_name = 'test' + api
            test_data = [tuple(x.values()) for x in each.get('responses')]
            function = gen_function(function_express.format(function_name),
                                    namespace={'validator': validator, 'allure': allure})
            # 集成allure
            story_function = allure.story('{}'.format(api.replace('_', '/')))(function)
            attrs[function_name] = pytest.mark.parametrize('response,validata', test_data)(story_function)

        return super().__new__(cls, name, bases, attrs)

CaseMetaClass是一个元类,它读取test_cases_data属性的内容,然后动态生成方法对象,每一个接口都是单独一个方法,在相继被allure的细粒度测试报告功能和pytest提供的参数化测试功能装饰后,把该方法对象赋值给test+api的类属性,也就是说,TestxxAPI在生成之后便有了若干testxx的方法,此时内部再运行起pytest,pytest也就能发现这些用例并执行了。

def gen_function(function_express, namespace={}):
    """
    动态生成函数对象, 函数作用域默认设置为builtins.__dict__,并合并namespace的变量
    :param function_express: 函数表达式,示例 'def foobar(): return "foobar"'
    :return:
    """
    builtins.__dict__.update(namespace)
    module_code = compile(function_express, '', 'exec')
    function_code = [c for c in module_code.co_consts if isinstance(c, types.CodeType)][0]
    return types.FunctionType(function_code, builtins.__dict__)

在生成方法对象时要注意namespace的问题,最好默认传builtins.dict,然后自定义的方法通过namespace参数传进去。

后续(yml测试文件自动生成)

至此,框架的核心功能已经完成了,经过几个项目的实践,效果完全超过预期,写起用例来不要太爽,运行起来不要太快,测试报告也整的明明白白漂漂亮亮的,但我发现还是有些累,为什么呢?
我目前做接口测试的流程是,如果项目集成了swagger,通过swagger去获取接口信息,根据这些接口信息来手工起项目创建用例。这个过程很重复很繁琐,因为我们的用例模板已经大致固定了,其实用例之间就是一些参数比如目录、用例名称、method等等的区别,那么这个过程我觉得完全可以自动化。
因为swagger有个网页啊,我可以去提取关键信息来自动创建.yml测试文件,就像搭起架子一样,待项目架子生成后,我再去设计用例填传参就可以了。
于是我试着去解析请求swagger首页得到的HTML,然后失望的是并没有实际数据,后来猜想应该是用了ajax,打开浏览器控制台的时,我发现了api-docs的请求,一看果然是json数据,那么问题就简单了,网页分析都不用了。

import re
import os
import sys

from requests import Session

template ="""
args:
  - {method}
  - {api}
kwargs:
  -
    caseName: {caseName}
    {data_or_params}:
        {data}
validator:
  -
    json:
      successed: True
"""


def auto_gen_cases(swagger_url, project_name):
    """
    根据swagger返回的json数据自动生成yml测试用例模板
    :param swagger_url:
    :param project_name:
    :return:
    """
    res = Session().request('get', swagger_url).json()
    data = res.get('paths')

    workspace = os.getcwd()

    project_ = os.path.join(workspace, project_name)

    if not os.path.exists(project_):
        os.mkdir(project_)

    for k, v in data.items():
        pa_res = re.split(r'[/]+', k)
        dir, *file = pa_res[1:]

        if file:
            file = ''.join([x.title() for x in file])
        else:
            file = dir

        file += '.yml'

        dirs = os.path.join(project_, dir)

        if not os.path.exists(dirs):
            os.mkdir(dirs)

        os.chdir(dirs)

        if len(v) > 1:
            v = {'post': v.get('post')}
        for _k, _v in v.items():
            method = _k
            api = k
            caseName = _v.get('description')
            data_or_params = 'params' if method == 'get' else 'data'
            parameters = _v.get('parameters')

            data_s = ''
            try:
                for each in parameters:
                    data_s += each.get('name')
                    data_s += ': \n'
                    data_s += ' ' * 8
            except TypeError:
                data_s += '{}'

        file_ = os.path.join(dirs, file)

        with open(file_, 'w', encoding='utf-8') as fw:
            fw.write(template.format(
                method=method,
                api=api,
                caseName=caseName,
                data_or_params=data_or_params,
                data=data_s
            ))

        os.chdir(project_)

现在要开始一个项目的接口测试覆盖,只要该项目集成了swagger,就能秒生成项目架子,测试人员只需要专心设计接口测试用例即可,我觉得对于测试团队的推广使用是很有意义的,也更方便了我这样的懒人。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

接口自动化测试框架开发(pytest+allure+aiohttp+ 用例自动生成),软件测试,pytest,功能测试,软件测试,自动化测试,程序人生,职场和发展

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你! 

接口自动化测试框架开发(pytest+allure+aiohttp+ 用例自动生成),软件测试,pytest,功能测试,软件测试,自动化测试,程序人生,职场和发展文章来源地址https://www.toymoban.com/news/detail-819326.html

到了这里,关于接口自动化测试框架开发(pytest+allure+aiohttp+ 用例自动生成)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 一个简单的接口自动化测试框架:Python+Requests+Pytest+Allure

    project:api_test ——api_keyword ————api_key.py:接口驱动类 ——case ————test_cases.py:测试套件和测试用例 ——report_allure( 无需创建 ):allure报告 ——result( 无需创建 ):测试用例运行结果 ——VAR ————VAR.py:常量类 conftest.py:项目级别fixture main.py:主函数

    2024年02月03日
    浏览(73)
  • Python+Pytest+Allure+Git+Jenkins数据驱动接口自动化测试框架

    一、接口基础 接口测试是对系统和组件之间的接口进行测试,主要是效验数据的交换,传递和控制管理过程,以及相互逻辑依赖关系。其中接口协议分为HTTP,RPC,Webservice,Dubbo,RESTful等类型。 接口测试流程 1、需求评审,熟悉业务和需求 2、开发提供接口文档 3、编写接口测

    2024年02月08日
    浏览(83)
  • (Python)Requests+Pytest+Allure接口自动化测试框架从0到1搭建

    前面,已经学习了如何用SpringBoot写接口以及与Mysql数据库进行交互,具体可查阅下面的这篇博客,今天学习一下基于Python的接口自动化测试框架的搭建,主要包括以下内容:利用request库发送请求,请求数据参数化处理,还涉及到数据库(Mysql+MongDB)方面的交互,包括如何取数

    2024年02月13日
    浏览(161)
  • Python+Requests+Pytest+Excel+Allure 接口自动化测试项目实战【框架之间的对比】

            --------UnitTest框架和PyTest框架的简单认识对比与项目实战-------- 定义: Unittest是Python标准库中自带的单元测试框架,Unittest有时候也被称为PyUnit,就像JUnit是Java语言的标准单元测试框架一样,Unittest则是Python语言的标准单元测试框架。 Pytest是Python的另一个第三方单元测

    2024年02月09日
    浏览(58)
  • 接口自动化框架(Pytest+request+Allure)

    接口自动化是指模拟程序接口层面的自动化,由于接口不易变更,维护成本更小,所以深受各大公司的喜爱。 接口自动化包含2个部分,功能性的接口自动化测试和并发接口自动化测试。 本次文章着重介绍第一种,功能性的接口自动化框架。 环境:Mac、Python 3,Pytest,Allure,

    2024年03月14日
    浏览(86)
  • Pytest自动化测试框架之Allure报告

    Allure Framework是一种灵活的、轻量级、多语言测试报告工具。 不仅可以以简洁的网络报告形式非常简洁地显示已测试的内容, 而且还允许参与开发过程的每个人从日常执行中提取最大程度的有用信息和测试。 从开发/测试的角度来看: Allure报告可以快速查看到缺陷点,可以将

    2024年02月06日
    浏览(96)
  • 【Pytest实战】Pytest+Allure+Jenkins自动化测试框架搭建

    😄作者简介: 小曾同学.com,一个致力于测试开发的博主⛽️,主要职责:测试开发、CI/CD 如果文章知识点有错误的地方,还请大家指正,让我们一起学习,一起进步。😊 座右铭:不想当开发的测试,不是一个好测试✌️。 如果感觉博主的文章还不错的话,还请点赞、收藏哦

    2024年02月15日
    浏览(64)
  • 接口自动化测试:Python+Pytest+Requests+Allure

    本项目实现了对Daily Cost的接口测试: Python+Requests 发送和处理HTTP协议的请求接口 Pytest 作为测试执行器 YAML 管理测试数据 Allure 来生成测试报告。 本项目是参考了pytestDemo做了自己的实现。 项目结构 api : 接口封装层,如封装HTTP接口为Python接口 commom : 从文件中读取数据等各种

    2024年02月09日
    浏览(73)
  • Python+Requests+PyTest+Excel+Allure 接口自动化测试实战

    本文主要介绍了Python+Requess+PyTest+Excel+Allure 接口自动化测试实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧 Unittest是Python标准库中自带的单元测试框架,Unittest有时候也被称为PyUnit,就像

    2024年02月07日
    浏览(65)
  • Python+Appium+Pytest+Allure实战APP自动化测试框架

    Hi,大家好。今天我们来聊聊Python+Appium+Pytest+Allure实战APP自动化测试,pytest只是单独的一个单元测试框架,要完成app测试自动化需要把pytest和appium进行整合,同时利用allure完成测试报告的产出。 编写常规的 线性 脚本具体的步骤如下: 1、设计待测试APP的 自动化测试 用例 2、

    2023年04月09日
    浏览(81)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包