机器学习_8、支持向量机

这篇具有很好参考价值的文章主要介绍了机器学习_8、支持向量机。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 支持向量机解决鸢尾花数据集分类问题

# 导入鸢尾花数据集
from sklearn.datasets import load_iris
import pandas as pd
import numpy as np

iris_data = load_iris()
X=iris_data.data
y=iris_data.target

# 划分训练集与测试集
from sklearn.model_selection import train_test_split
# 让参数stratify=y,使测试集与训练集中各类别样本数量的比例与原数据集中
# 各类别的样本数量比例相同
X_train, X_test, y_train, y_test =     train_test_split(X,y,test_size=0.1,stratify=y,random_state=5)

# 特征数据标准化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)  # 从训练集中学习标准化参数
X_train_std = scaler.transform(X_train)
# 测试集特征数据的标准化也要使用训练集的标准化模型
X_test_std = scaler.transform(X_test)

# 创建并训练分类线性支持向量机模型
from sklearn.svm import SVC
model = SVC(C=1.0, kernel="linear", class_weight='balanced',
            decision_function_shape="ovr",  #采用一对其余策略
            probability=True, random_state=0)
model.fit(X_train_std, y_train)  #用标准化后的特征数据训练模型
print("学得的特征权重参数:\n",model.coef_, sep="")
print("学得的模型截距:",model.intercept_)
print("样本类别:",model.classes_)

# 性能评估
print("训练集准确率:", model.score(X_train_std, y_train))
print("测试集准确率:", model.score(X_test_std, y_test))

# 预测测试集数据
y_test_pred = model.predict(X_test_std)
print("预测的测试集数据标签前3项:",y_test_pred[:3])
# 预测新数据
X_new = np.array([[8, 2.6, 6.5, 2.1]])
X_new_std = scaler.transform(X_new)
y_new = model.predict(X_new_std)
print("新数据预测标签为:",y_new)
y_new_proba = model.predict_proba(X_new_std)
print("预测新数据的类别概率:", y_new_proba)
# 最大概率对应的标签序号
y_new_label_local = np.argmax(y_new_proba)
y_new_label = model.classes_[y_new_label_local]
print("新数据的预测标签:", y_new_label)
print("新数据标签对应的类别名称:", iris_data.target_names[y_new_label])

机器学习_8、支持向量机,机器学习,机器学习,支持向量机,人工智能文章来源地址https://www.toymoban.com/news/detail-819372.html

到了这里,关于机器学习_8、支持向量机的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能|机器学习——基于机器学习的舌苔检测

    基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。 传统中医的舌诊主要依赖

    2024年02月22日
    浏览(65)
  • 机器学习--人工智能概述

    入门人工智能,了解人工智能是什么。为啥发展起来,用途是什么,是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程 机器学习定义以及应用场景 监督学习,无监督学习 监督学习中的分类、回归特点 知道机器学习的开发流程 人工智能在现实生活中的应用

    2024年01月19日
    浏览(57)
  • 人工智能与机器学习

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:《机器学习》 ​ ​ ☞什么是人工智能、机器学习、深度学习 人工智能这个概念诞生于1956年的达特茅斯

    2024年02月02日
    浏览(59)
  • 【机器学习】人工智能概述

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.人工智能概述 1.1 机器学习、人工智能与深度学习 1.2 机器学习、深度学习能做些什么

    2024年02月09日
    浏览(53)
  • 人工智能与机器人|机器学习

    原文链接: https://mp.weixin.qq.com/s/PB_n8woxdsWPtrmL8BbehA 机器学习下包含神经网络、深度学习等,他们之间的关系表示如图2-7所示。 图2-7 关系图 那么什么是机器学习、深度学习、他们的区别又是什么呢? 2.7.1 什么是机器学习? 机器学习是 人工智能 (AI) 和计算机科学的一个分支,

    2024年02月06日
    浏览(77)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(51)
  • 【人工智能技术】机器学习工具总览

    当谈到训练计算机在没有明确编程的情况下采取行动时,存在大量来自机器学习领域的工具。学术界和行业专业人士使用这些工具在MRI扫描中构建从语音识别到癌症检测的多种应用。这些工具可在网上免费获得。如果您感兴趣,我已经编制了这些的排名(请参阅本页底部)以

    2024年02月04日
    浏览(62)
  • 人工智能与开源机器学习框架

    链接:华为机考原题 TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个针对神经网络和深度学习的强大工具集,能够帮助开发人员构建和训练各种机器学习模型。 TensorFlow的基本概念包括: 张量(Tensor):张量是TensorFlow中的核心数据结构,它表示多维数

    2024年02月22日
    浏览(60)
  • 机器学习、人工智能、深度学习三者的区别

    目录 1、三者的关系 2、能做些什么 3、阶段性目标 机器学习、人工智能(AI)和深度学习之间有密切的关系,它们可以被看作是一种从不同层面理解和实现智能的方法。 人工智能(AI):人工智能是一门研究如何使计算机能够模仿人类智能的学科。它涵盖了各种技术和方法,

    2024年02月14日
    浏览(57)
  • 12、人工智能、机器学习、深度学习的关系

    很多年前听一个机器学习的公开课,在QA环节,一个同学问了老师一个问题“ 机器学习和深度学习是什么关系 ”? 老师先没回答,而是反问了在场的同学,结果问了2-3个,没有人可以回答的很到位,我当时也是初学一脸懵,会场准备的小礼品也没有拿到。 后来老师解释“机

    2024年02月05日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包