OpenCV书签 #差值哈希算法的原理与相似图片搜索实验

这篇具有很好参考价值的文章主要介绍了OpenCV书签 #差值哈希算法的原理与相似图片搜索实验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 介绍

差值哈希算法(Difference Hash Algorithm,简称dHash) 是哈希算法的一种,主要可以用来做以图搜索/相似图片的搜索工作。

 

2. 原理

差值哈希算法通过计算相邻像素的差异来生成哈希,即通过缩小图像的每个像素与平均灰度值的比较,生成一组哈希值。最后,利用两组图像的哈希值的汉明距离来评估图像的相似度。

 

3. 魔法

概括地讲,差值哈希算法一共可细分五步:

  1. 缩小图像: 调整输入图像的大小为 (hash_size + 1) 宽度和 hash_size 高度,通常为 9x8 像素,总共72个像素。
  2. 图像灰度化: 将彩色图像转换为灰度图像,以便进行灰度差值计算。
  3. 计算差异值: 差值算法工作在相邻像素之间,如果左边的像素比右边的更亮,则记录为1,否则为0,这样每行9个像素通过左右像素的两两比较,会产生8个不同的差异值,一共8行,则会产生64个差异值。
  4. 生成哈希值: 由于64位的二进制值(差异值)太长,所以按每4个字符为1组,由2进制转成16进制。这样就转为一个长度为16的字符串。这个字符串也就是这个图像可识别的哈希值,也叫图像指纹,即这个图像所包含的特征。
  5. 哈希值比较: 通过比较两个图像的哈希值的汉明距离(Hamming Distance),就可以评估图像的相似度,距离越小表示图像越相似。

 

4. 实验

4.1 魔法

第一步:缩小图像

调整输入图像的大小为 (hash_size + 1) 宽度和 hash_size 高度,通常为 9x8 像素,总共72个像素,以便进行后续的差值计算。

1)读取原图

# 测试图片路径
img_path = 'img_test/apple-01.jpg'
 
# 通过OpenCV加载图像
img = cv2.imread(img_path)
plt.imshow(img, cmap='gray')
plt.show()

# 通道重排,从BGR转换为RGB
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb, cmap='gray')
plt.show()

OpenCV书签 #差值哈希算法的原理与相似图片搜索实验,OpenCV,Python,算法,opencv,哈希算法,差值哈希算法,python,相似图片搜索,图搜索算法,以图搜图

2)缩小原图

# 缩小图像:使用OpenCV的resize函数将图像缩放为9x8像素,采用Cubic插值方法进行图像重采样
img_resize = cv2.resize(img_rgb, (9, 8), cv2.INTER_CUBIC)

# 打印 img.shape 可以获取图像的形状信息,即 (行数, 列数, 通道数)
# 通道数:灰度图像通道数为 1,彩色图像通道数为 3
print(img_resize.shape)
plt.imshow(img_resize, cmap='gray')
plt.show()

输出打印:

(8, 9, 3)

OpenCV书签 #差值哈希算法的原理与相似图片搜索实验,OpenCV,Python,算法,opencv,哈希算法,差值哈希算法,python,相似图片搜索,图搜索算法,以图搜图
将图像 img 调整大小为 (9, 8) 的尺寸,并使用 cv2.INTER_CUBIC 插值方法进行图像的缩放。在这里,原始图像 img 将被调整为 9 像素宽和 8 像素高。
打印 img.shape 可以获取图像的形状信息,即(行数, 列数, 通道数)。通道数取决于原始图像的通道数(如灰度图像通道数为 1,彩色图像通道数为 3)。

第二步:图像灰度化

将彩色图像转换为灰度图像,以便进行灰度差值计算。

# 图像灰度化:将彩色图像转换为灰度图像。
img_gray = cv2.cvtColor(img_resize, cv2.COLOR_BGR2GRAY)

# 打印出了灰度图像的行数和列数,因为灰度图像只有一个通道,所以不会显示通道数
print(img_gray.shape)
plt.imshow(img_gray, cmap='gray')
plt.show()

输出打印:

(8, 9)

OpenCV书签 #差值哈希算法的原理与相似图片搜索实验,OpenCV,Python,算法,opencv,哈希算法,差值哈希算法,python,相似图片搜索,图搜索算法,以图搜图
使用 OpenCV 的 cvtColor 函数将彩色图像 img 转换为灰度图像。cv2.COLOR_BGR2GRAY 是颜色空间转换标志,它指示将图像从 BGR(彩色)颜色空间转换为灰度颜色空间。

打印 img_gray.shape 包含图像的维度信息,通常是(行数, 列数)或(行数, 列数, 通道数)。这里只有灰度图像的行数和列数,因为灰度图像只有一个通道,所以不会显示通道数。

第三步:计算差异值

差值算法工作在相邻像素之间,如果左边的像素比右边的更亮,则记录为1,否则为0,这样每行9个像素通过左右像素的两两比较,会产生8个不同的差异值,一共8行,则会产生64个差异值。

# 计算差异值:获得图像二进制字符串
img_hash_str = ''
# img_hash_arr = []
# 遍历图像的像素,比较相邻像素之间的灰度值,根据强弱增减差异情况生成一个二进制哈希值
# 外层循环,遍历图像的行(垂直方向),范围是从0到7
for i in range(8):
    # 内层循环,遍历图像的列(水平方向),范围也是从0到7
    for j in range(8):
        # 比较当前像素 img[i, j] 与下一个像素 img[i, j + 1] 的灰度值
        if img_gray[i, j] > img_gray[i, j + 1]:
            # 如果当前像素的灰度值大于下一个像素的灰度值(灰度值增加),将1添加到名为 hash 的列表中
            # img_hash_arr.append(1)
            img_hash_str += '1'
        else:
            # 否则灰度值弱减,将0添加到名为 hash 的列表中
            # img_hash_arr.append(0)
            img_hash_str += '0'
print(f"图像的二进制哈希值={img_hash_str}")

输出打印:

图像的二进制哈希值=0000000000110000001100000010000001110000001000000011000001110000

这段代码的目的是遍历图像的每一行和每一列,逐个比较相邻像素之间的灰度值,根据比较结果生成一个二进制哈希值。如果像素之间的灰度值增加,就将1添加到哈希值中,如果减少或保持不变,就将0添加。这个生成的哈希值可用于图像相似性比较,用于检测图像中的局部特征。

第四步:生成哈希值

由于64位二进制值太长,所以按每4个字符为1组,由2进制转成16进制。这样就转为一个长度为16的字符串。这个字符串也就是这个图像可识别的哈希值,也叫图像指纹,即这个图像所包含的特征。

# 生成哈希值:生成图像可识别哈希值
img_hash = ''
for i in range(0, 64, 4):
    img_hash += ''.join('%x' % int(img_hash_str[i: i + 4], 2))
print(f"图像可识别的哈希值={img_hash}")

输出打印:

图像可识别的哈希值=0030302070203070

同样的,将目标素材图像进行上述计算,亦可得到一个图像可识别的哈希值。

第五步:哈希值比较

通过两个等长字符串在相同位置上不同字符的数量,计算两个等长字符串之间的汉明距离(Hamming Distance),就可以评估图像的相似度,距离越小表示图像越相似。

# 汉明距离:通过两个等长字符串在相同位置上不同字符的数量,计算两个等长字符串之间的汉明距离
def hamming_distance(s1, s2):
    # 检查这两个字符串的长度是否相同。如果长度不同,它会引发 ValueError 异常,因为汉明距离只适用于等长的字符串
    if len(s1) != len(s2):
        raise ValueError("Input strings must have the same length")
    
    distance = 0
    for i in range(len(s1)):
        # 遍历两个字符串的每个字符,比较它们在相同位置上的值。如果发现不同的字符,将 distance 的值增加 1
        if s1[i] != s2[i]:
            distance += 1
    return distance

汉明距离: 两个等长字符串在相同位置上不同字符的数量。即一组二进制数据变成另一组数据所需要的步骤数。汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样。

OpenCV书签 #差值哈希算法的原理与相似图片搜索实验,OpenCV,Python,算法,opencv,哈希算法,差值哈希算法,python,相似图片搜索,图搜索算法,以图搜图

 

4.2 测试

实验场景

通过 opencv,使用差值哈希算法查找目标图像素材库中所有相似图像,并列出相似值。

实验素材

这里,我准备了10张图片,其中9张是苹果,但形态不一;1张梨子。
OpenCV书签 #差值哈希算法的原理与相似图片搜索实验,OpenCV,Python,算法,opencv,哈希算法,差值哈希算法,python,相似图片搜索,图搜索算法,以图搜图

实验代码

"""
以图搜图:差值哈希算法(Difference Hash Algorithm,简称dHash)的原理与实现
测试环境:win10 | python 3.9.13 | OpenCV 4.4.0 | numpy 1.21.1
实验场景:通过 opencv,使用差值哈希算法查找目标图像素材库中所有相似图像
实验时间:2023-10-31
实验名称:dhash_v5_all.py
"""

import os
import cv2
import time

def get_dHash(img_path):
    # 读取图像:通过OpenCV的imread加载RGB图像
    img_rgb = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
    # 缩小图像:使用OpenCV的resize函数将图像缩放为9x8像素,采用Cubic插值方法进行图像重采样
    img_resize = cv2.resize(img_rgb, (9, 8), cv2.INTER_CUBIC)
    # 图像灰度化:将彩色图像转换为灰度图像
    img_gray = cv2.cvtColor(img_resize, cv2.COLOR_BGR2GRAY)

    # 计算差异值:获得图像二进制字符串
    img_hash_str = ''
    # 遍历图像的像素,比较相邻像素之间的灰度值,根据强弱增减差异情况生成一个二进制哈希值
    # 外层循环,遍历图像的行(垂直方向),范围是从0到7
    for i in range(8):
        # 内层循环,遍历图像的列(水平方向),范围也是从0到7
        for j in range(8):
            # 比较当前像素 img[i, j] 与下一个像素 img[i, j + 1] 的灰度值
            if img_gray[i, j] > img_gray[i, j + 1]:
                # 如果当前像素的灰度值大于下一个像素的灰度值(灰度值增加),将1添加到名为 hash 的列表中
                img_hash_str += '1'
            else:
                # 否则灰度值弱减,将0添加到名为 hash 的列表中
                img_hash_str += '0'
    # print(f"图像的二进制哈希值={img_hash_str}")

    # 生成哈希值:生成图像可识别哈希值
    img_hash = ''.join(map(lambda x:'%x' % int(img_hash_str[x : x + 4], 2), range(0, 64, 4)))
    return img_hash


# 汉明距离:通过两个等长字符串在相同位置上不同字符的数量,计算两个等长字符串之间的汉明距离
def hamming_distance(str1, str2):
    # 检查这两个字符串的长度是否相同。如果长度不同,它会引发 ValueError 异常,因为汉明距离只适用于等长的字符串
    if len(str1) != len(str2):
        raise ValueError("Input strings must have the same length")
    
    distance = 0
    for i in range(len(str1)):
        # 遍历两个字符串的每个字符,比较它们在相同位置上的值。如果发现不同的字符,将 distance 的值增加 1
        if str1[i] != str2[i]:
            distance += 1
    return distance


# ------------------------------------------------- 测试 -------------------------------------------------
if __name__ == "__main__":
    time_start = time.time()

    # 指定测试图像库目录
    img_dir = 'img_test'
    # 指定测试图像文件扩展名
    img_suffix = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']

    # 获取当前执行脚本所在目录
    script_dir = os.path.dirname(__file__)
    # 获取目标测试图像的全路径
    img_org_path = os.path.join(script_dir, img_dir, 'apple-01.jpg')
    # 获取目标图像可识别哈希值(图像指纹)
    org_img_hash = get_dHash(img_org_path)
    print(f"目标图像:{os.path.relpath(img_org_path)},图像HASH:{org_img_hash}")

    # 获取测试图像库中所有文件
    all_files = os.listdir(os.path.join(script_dir, img_dir))
    # 筛选出指定后缀的图像文件
    img_files = [file for file in all_files if any(file.endswith(suffix) for suffix in img_suffix)]

    img_hash_all = []
    # 遍历测试图像库中的每张图像
    for img_file in img_files:
        # 获取相似图像文件路径
        img_path = os.path.join(script_dir, img_dir, img_file)
        # 获取相似图像可识别哈希值(图像指纹)
        img_hash = get_dHash(img_path)
        # 获取相似图像与目标图像的汉明距离
        distance = hamming_distance(org_img_hash, img_hash)
        # 存储相似图像的相对路径、哈希值、汉明距离
        img_hash_all.append((os.path.relpath(img_path), img_hash, distance))

    for img in img_hash_all:
        print(f"图像名称:{os.path.basename(img[0])},图像HASH:{img[1]},与目标图像的近似值(汉明距离):{img[2]}")

    time_end = time.time()
    print(f"耗时:{time_end - time_start}")

输出打印:

目标图像:..\..\P1_Hash\03_dHash\img_test\apple-01.jpg,图像HASH:0030302070203070
图像名称:apple-01.jpg,图像HASH:0030302070203070,与目标图像的近似值(汉明距离):0
图像名称:apple-02.jpg,图像HASH:2048502430301000,与目标图像的近似值(汉明距离):9
图像名称:apple-03.jpg,图像HASH:0030705070506020,与目标图像的近似值(汉明距离):5
图像名称:apple-04.jpg,图像HASH:3030303038301000,与目标图像的近似值(汉明距离):7
图像名称:apple-05.jpg,图像HASH:0818206840602830,与目标图像的近似值(汉明距离):11
图像名称:apple-06.jpg,图像HASH:00004cccd0c8eeec,与目标图像的近似值(汉明距离):12
图像名称:apple-07.jpg,图像HASH:5af53928b158dc1e,与目标图像的近似值(汉明距离):14
图像名称:apple-08.jpg,图像HASH:87868a060c081e2c,与目标图像的近似值(汉明距离):16
图像名称:apple-09.jpg,图像HASH:0040285060602070,与目标图像的近似值(汉明距离):7
图像名称:pear-001.jpg,图像HASH:0204367274f07060,与目标图像的近似值(汉明距离):10
耗时:0.09773826599121094

 

5. 总结

经过实验和测试,差值哈希算法(dHash)是一种非常简单的算法,易于实现和理解,且计算速度快,适用于大规模图像数据相似性处理。

特点: 传统,属于一种外观相似哈希算法。
优点: 简单、相对准确、计算效率高;在同等测试样本下,相比pHash,dHash的速度要更快;适用于快速图像相似性搜索。
缺点: 对于图像的旋转和缩放敏感,不适用于检测嵌入式水印或复杂的变换,即使是微小的旋转或缩放也会导致哈希值大幅度改变,因为它主要用于检测左右局部像素级别的变化。

 

6. 系列书签

OpenCV书签 #均值哈希算法的原理与相似图片搜索实验
OpenCV书签 #感知哈希算法的原理与相似图片搜索实验
OpenCV书签 #差值哈希算法的原理与相似图片搜索实验文章来源地址https://www.toymoban.com/news/detail-819490.html

到了这里,关于OpenCV书签 #差值哈希算法的原理与相似图片搜索实验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV #以图搜图:均值哈希算法(Average Hash Algorithm)原理与实验

    均值哈希算法(Average Hash Algorithm,简称aHash) 是哈希算法的一种,主要用来做相似图片的搜索工作。   均值哈希算法(aHash)首先将原图像缩小成一个固定大小的像素图像,然后将图像转换为灰度图像,通过缩小图像的每个像素与平均灰度值的比较,生成一组哈希值。最后,

    2024年02月08日
    浏览(42)
  • OpenCV #以图搜图:感知哈希算法(Perceptual hash algorithm)的原理与实验

    感知哈希算法(Perceptual Hash Algorithm,简称pHash) 是哈希算法的一种,主要可以用来做以图搜索/相似图片搜索工作。   感知哈希算法(pHash)首先将原图像缩小成一个固定大小的像素图像,然后将图像转换为灰度图像,通过使用离散余弦变换(DCT)来获取频域信息。然后,根

    2024年02月05日
    浏览(58)
  • Elasticsearch:如何在 Elastic 中实现图片相似度搜索

    作者:Radovan Ondas 在本文章,我们将了解如何通过几个步骤在 Elastic 中实施相似图像搜索。 开始设置应用程序环境,然后导入 NLP 模型,最后完成为你的图像集生成嵌入。 Elastic 图像相似性搜索概览 Elasticsearch:如何在 Elastic 中实现图片相似度搜索 第一步是为你的应用程序设

    2024年01月22日
    浏览(52)
  • OpenCV(图像处理)-图片搜索

    Opencv进行图片搜索需要的知识有:特征点匹配+单应性矩阵知识,特征点匹配作者前面文章有记录。 单应性矩阵:两个不同视角上的点所对应的单应性矩阵可以用同一个射影变换来表述可以简单理解为变换矩阵H,x1 = h*x2 分别计算查询图片和训练图片的特征点和特征点的描述子

    2024年02月13日
    浏览(45)
  • 图像检索(Image Retrieval)是通过搜索引擎、计算机视觉等计算机技术对海量图片进行快速检索,找到最相关的图像或者按照某种相似性度量度进行排序的一类计算机技术

    作者:禅与计算机程序设计艺术 图像检索(Image Retrieval)是通过搜索引擎、计算机视觉等计算机技术对海量图片进行快速检索,找到最相关的图像或者按照某种相似性度量度进行排序的一类计算机技术。其目的是为了提高图片检索的效率及用户体验,从而节省时间、提升效率。

    2024年02月07日
    浏览(54)
  • python+openCV使用SIFT算法实现印章的总相似度检测

    首先整体流程是预建了一个印章库,包含若干张图片。目的是输入一张印章图片,与库里图片对比,最终显示相似度最高的三张。记一下关键代码。 1.图像预处理 主要是红色区域提取、常规灰度二值、对于形态不好的图片做个腐蚀啥的。 2.做一个霍夫圆打开,方便后续文字识

    2024年02月08日
    浏览(47)
  • 【SM3哈希算法】算法原理

    参考: SM3算法是一种密码散列函数标准,由国家密码管理局发布。它的安全性和SHA-256相当,适用于商用密码应用中的数字签名和验证、消息认证码生成和验证、随机数生成等。 将输入的消息分成512位的分组,并对每个分组进行填充、分组、扩展、迭代压缩等操作,最后输出

    2024年02月08日
    浏览(41)
  • 基于Python+OpenCV的图像搜索引擎(CBIR+深度学习+机器视觉)含全部工程源码及图片数据库下载资源

    本项目旨在开发一套完整高效的图像搜索引擎,为用户提供更加便捷的图片搜索体验。为了实现这一目标,我们采用了 CBIR(Content-based image retrieval)技术,这是目前主流的图像搜索方法之一。CBIR 技术基于图像内容的相似性来检索相似的图像,相比于传统的图像搜索方法,

    2024年02月08日
    浏览(63)
  • 算法之美:探究左右元素和的差值

    本篇博客会讲解力扣“2574. 左右元素和的差值”的解题思路,这是题目链接。 先来审题: 以下是输出示例: 以下是提示: 本题的关键在于,“左和”和“右和”是如何变化的。下面我通过代码来演示。 一上来,我们应该求下表为0的元素的“左和”和“右和”。 接下来,开

    2024年02月04日
    浏览(28)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包