手势识别MATLAB代码

这篇具有很好参考价值的文章主要介绍了手势识别MATLAB代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

手势识别是智能设备常用的需求, 下面我们用MATLAB来识别手部的形态:

主程序main.m


clc;clear all;close all;%清除命令行和窗口
im=imread('DSC05815.JPG');

[skin,bwycbcr,w,h] = hand_segmentation(im);
im1=bwycbcr;
%  se = strel('ball',[1 1 1;1 1 1;1 1 1]);
 im1 = imdilate(im1,[1 1 1;1 1 1;1 1 1]);
 figure;
 imshow(im1);
 title('Dilated');
I_closed = imageclose(im1);


bw2=imadjust(I_closed,[0,1]);
%去除少像素连通区域
bw3=bwareaopen(bw2,round(w*h/10));
figure;
imshow(bw3); 
title('去除少数像素');
se=strel('disk',5);
I_closed2=imclose(bw3,se);


I=I_closed2;
BW1=edge(I,'sobel'); %用SOBEL算子进行边缘检测
BW2=edge(I,'roberts');%用Roberts算子进行边缘检测
BW3=edge(I,'prewitt'); %用prewitt算子进行边缘检测
BW4=edge(I,'log'); %用log算子进行边缘检测
BW5=edge(I,'canny'); %用canny算子进行边缘检测
h=fspecial('gaussian',5);
BW6=edge(I,'canny');
figure;
subplot(2,3,1), imshow(BW1);
title('sobel edge check');
subplot(2,3,2), imshow(BW2);
title('sobel edge check');
subplot(2,3,3), imshow(BW3);
title('prewitt edge check');
subplot(2,3,4), imshow(BW4);
title('log edge check');
subplot(2,3,5), imshow(BW5);
title('canny edge check');
subplot(2,3,6), imshow(BW6);
title('gasussian&canny edge check');%此为用高斯滤波后Canny算子边缘检测结果

r1=im(:,:,1);
b1=im(:,:,2);
g1=im(:,:,3);

%% 判断边缘
[w1,h1,k43]=size(im);
for i=1:w1
    for j=1:h1
        if BW6(i,j)==1%是边缘
            % 用红色标出边缘
            r1(i,j)=255;
            b1(i,j)=0;
            g1(i,j)=0;
        end
    end
end
Iegde=zeros(w1,h1,3);
% 合成彩色图
Iegde(:,:,1)=r1;
Iegde(:,:,2)=b1;
Iegde(:,:,3)=g1;
Iegde=double(Iegde/255);%转换为0-1彩色图
figure;
imshow(Iegde);%绘制识别出来的图


子函数imageclose.m

%执行了先膨后胀腐蚀的闭运算
function I_closed = imageclose(im1)
%I=imread('result.bmp');
se=strel('disk',3);
I_closed=imclose(im1,se);
%subplot(1,2,1);
%imshow(im1);
figure;
imshow(I_closed);
title('闭运算后图像');
%imwrite(I_opened,'result1.bmp');
 

子函数 hand_segmentation.m

function [skin,bwycbcr,w,h] = hand_segmentation(im)
%imgrgb=imread('IMG_2755.jpg');
% im=imread('DSC05818.JPG');
[w h]=size(im(:,:,1));
%Laplacian 八邻域模板滤波
h1=[-1,-1,-1;-1,9,-1;-1,-1,-1];
bw1=imfilter(im,h1);
% bw1=im;
[m,n,c]=size(bw1);
% delete strFile,c;
%将RGB色彩空间转换为Ycbcr色彩空间
imgrgb3=rgb2ycbcr(bw1);
y=imgrgb3(:,:,1);
cb=imgrgb3(:,:,2);
cr=imgrgb3(:,:,3);
%==================================
%在Ycbcr色彩空间中分割肤色区域
cb=double(cb);
cr=double(cr);
y=double(y);
bwycbcr=zeros(m,n);
for i=1:m
    for j=1:n
        if y(i,j)<125
            cb1=108+(125-y(i,j))*10/109;
            cr1=154-(125-y(i,j))*10/109;
            wcb=23+(y(i,j)-16)*23.97/109;
            wcr=20+(y(i,j)-16)*18.76/109;
            cb1=(cb(i,j)-cb1)*46.97/wcb+cb1;
            cr1=(cr(i,j)-cr1)*38.76/wcr+cr1;
        elseif y(i,j)>188
            cb1=108+(y(i,j)-188)*10/47;
            cr1=154+(y(i,j)-188)*22/47;
            wcb=14+(235-y(i,j))*32.97/47;
            wcr=10+(235-y(i,j))*28.76/47;
            cb1=(cb(i,j)-cb1)*46.97/wcb+cb1;
            cr1=(cr(i,j)-cr1)*38.76/wcr+cr1;
        else
            cb1=cb(i,j);
            cr1=cr(i,j);
        end
        x1=[-0.819 0.574]*[cb1-109.38;cr1-152.02];
        y1=[-0.574 -0.819]*[cb1-109.38;cr1-152.02];
        if (x1-1.60).^2/644.6521+(y1-2.41).^2/196.8409<=1
            bwycbcr(i,j)=1;
        else bwycbcr(i,j)=0;
        end
    end 
end
%strWrite=strcat('a',strFile1);
%imwrite(bwycbcr,strWrite,'jpg');

figure;
%subplot(2,2,1);
imshow(im);
%title('原始图像');
figure;
%subplot(2,2,2);
imshow(bw1);
figure;
%title('Laplacian滤波');
%subplot(2,2,3);
imshow(bwycbcr); 
% figure;
%title('Ycbcr皮肤颜色模型');
%subplot(2,2,4);
%把bwycbcr拉伸到[0,1]
bw2=imadjust(bwycbcr,[0,1]);
skin=bw2;
%去除少像素连通区域

skin=bwareaopen(skin,round(w*h/1000));
% imshow(skin); 
% title('去除少数像素');

%imwrite(skin,'result.bmp');


子函数Datafind_V1.m

function [Cpx_C_fft_new5]=Datafind_V1(im4)
%im5=imread('result4.bmp');
[Y X]=size(im4);
flag=1;

%寻找链码的起始点
for k=1:Y
    if flag==0
        break;
    end        
    for kk=1:X
        b=im4(k,kk);
          if b==1
            p_x=kk;
            p_y=k;
            flag=0;
            break;
        end
    end
end
imagesc(im4);
colormap(gray);

flag=1;

cur_x=p_x;
cur_y=p_y;
chainCode=[p_y p_x];
im_bak=im4;
while flag==1
im4(cur_y,cur_x)=0;
imblock=im4(cur_y-1:cur_y+1,cur_x-1:cur_x+1);
if sum(sum(imblock))==0 
    if sum(sum(im4))==0 | abs(cur_x-p_x)+abs(cur_y-p_y)<3
        break;
    else
        im_bak(cur_y,cur_x)=0;
        im4=im_bak;
        cur_y=p_y;
        cur_x=p_x;
        chainCode=[];
    end
else
[n_y n_x]=findNb(imblock);
tmp=[n_y+cur_y n_x+cur_x];
chainCode=[chainCode; tmp];
cur_y=tmp(1);
cur_x=tmp(2);
end

end

%将链码出的边缘点组成复数点,并做归一化的傅里叶变换
Cpx_C=chainCode(:,1)+chainCode(:,2)*i;
N=length(Cpx_C);
Cpx_C_fft=1/N*fft(Cpx_C);
figure;plot(real(Cpx_C),imag(Cpx_C));
title('链码点plot图片');
Cpx_C_fft_new5=abs(Cpx_C_fft(2:11));
%save data5.mat Cpx_C_fft_new5 ;
%Cpx_C_new=ifft(Cpx_C_fft_new1);
%figure;plot(real(Cpx_C_new),imag(Cpx_C_new));
%BW=10;

%Cpx_C_fft_new=zeros(1,N);
%Cpx_C_fft_new(1:BW+1)=Cpx_C_fft(1:BW+1);
%Cpx_C_fft_new(N-(BW-1):N)=Cpx_C_fft(N-(BW-1):N);
%Cpx_C_new=ifft(Cpx_C_fft_new);
%figure;plot(real(Cpx_C_new),imag(Cpx_C_new));


子函数boundary_trace.m

%function g=boundary_trace(f)
%g=boundary_trace(f)跟踪目标的外边界,f为输入的二值图像,g为输出的二值图像
%此处f g都是认为是二维矩阵  【行  列】==【y   x】
%此算法只适用于二值图像
%f=imread('result1.bmp');
%去掉整幅图像四周围的像素点,保证图像目标的连通性
function g=boundary_trace(im2)
[YS,XS]=size(im2);
im2(1,1:XS)=0;
im2(YS,1:XS)=0;
im2(1:YS,1)=0;
im2(1:YS,XS)=0;

f=im2bw(im2);
imshow(im2);
offsetr=[-1,0,1,0];
offsetc=[0,1,0,-1];
next_search_dir_table=[4 1 2 3];%搜索方向查找表
next_dir_table=[2 3 4 1];%搜索顺序查找表
start=-1;
boundary=-2;
%找出起始点
[rv,cv]=find((f(2:end-1,:)>0)&(f(1:end-2,:)==0));
%此处可以简化处理,只用找出一个初始点即可。
rv=rv+1;
startr=rv(1);
startc=cv(1);
f=im2double(f);
f(startr,startc)=start;
cur_p=[startr,startc];
init_dir=-1;
done=0;
next_dir=2;  %初始搜索方向
flag=1;
while~done
dir=next_dir;
found_neighbour=0;
for i=1:length(offsetr)   %四邻域上的寻找下一个边缘点
    offset=[offsetr(dir),offsetc(dir)];
    neighbour=cur_p+offset;
    if(f(neighbour(1),neighbour(2)))~=0  %找到新的边缘点
        if(f(cur_p(1),cur_p(2))==start)&(init_dir==-1)
            init_dir=dir;  %记下离开初始点时的方向
            %当前点为初始点且新的边缘点的离开方向为初始离开方向,表明跟踪过程已饶了一圈
        elseif(f(cur_p(1),cur_p(2))==start)&(init_dir==dir)
            done=1;
            found_neighbour=1;
            break;
        end
        next_dir=next_search_dir_table(dir);   %下一个搜索方向
          found_neighbour=1;
          if f(neighbour(1),neighbour(2))~=start
            f(neighbour(1),neighbour(2))=boundary;
          
          end
          cur_p=neighbour;
     
           break;
      end
    dir=next_dir_table(dir);
end
end
bi=find(f==boundary);
f(:)=0;
f(bi)=1;
f(startr,startc)=1;
g=im2bw(f);
figure,imshow(g);
%title('边缘追踪后图像');
%imwrite(g,'result4.bmp');

%[Y,X]=find(g);
%corr=zeros(2,length(X));
%corr(1,:)=X;
%corr(2,:)=Y;

%frac_dim = boxcount(corr, 10,1);

子函数boundary_thin.m

function i_new1=boundary_thin(im3)
%i=imread('result47.bmp');
%imshow(im3);
%i_new=i>128;
%i_new1=bwmorph(i_new,'thin');2
i_new1=bwmorph(im3,'thin');
figure,imshow(i_new1);
title('细化图像');
%imwrite(i_new1,'result5.bmp');

子函数adjustsize.m
 

function I_new1=adjustsize(im1)
%I=imread('result.bmp');
%找到最左边和最右边灰度值不为1点的横坐标
J=sum(im1);
m=size(im1,2);
for i=1:m
    if J(i)~=0
        p=i;
        break;
    else 
        continue;
    end
end
for j=m:-1:1
    if J(j)~=0
        q=j;
        break;
    else
        continue;
    end
end
%找到最左边和最右边灰度值不为1点的纵坐标
I1=im1';
J1=sum(I1);
n=size(I1,2);
for k=1:n
    if J1(k)~=0
        r=k;
        break;
    else 
        continue;
    end
end
for l=n:-1:1
    if J1(l)~=0
        s=l;
        break;
    else
        continue;
    end
end
%剪切出以坐标点(p,r)和(q,s)组成的矩形区域
I_new=imcrop(im1,[p r q-p s-r]);
%figure,imshow(I_new);
I_new1=imresize(I_new,[150 150]);
figure,imshow(I_new1);
title('调整大小为150*150图像');


   程序结果如下:

手势识别MATLAB代码,matlab,开发语言

手势识别MATLAB代码,matlab,开发语言

手势识别MATLAB代码,matlab,开发语言

完整代码见:https://download.csdn.net/download/corn1949/88774968文章来源地址https://www.toymoban.com/news/detail-819702.html

到了这里,关于手势识别MATLAB代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab语音识别系统(源代码)最新版DOC

    目录 设计任务及要求………………………………………………1 语音识别的简单介绍 语者识别的概念……………………………………………2   特征参数的提取……………………………………………3   用矢量量化聚类法生成码本………………………………3   的说话人识别

    2024年01月24日
    浏览(54)
  • (神经网络)MNIST手写体数字识别MATLAB完整代码

            在此次实验中,笔者针对 MNIST 数据集,利用卷积神经网络进行训练与测试,提 出了一系列的改进方法,并对这些改进的方法进行了逐一验证,比较了改进方法与浅层 神经网络的优劣。         首先,笔者对实验中所用的 MNIST 数据集进行了简单的介绍;接着,

    2024年02月03日
    浏览(45)
  • 霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)

    当使用霍夫变换进行车道线识别时,可以按照以下步骤来编写 MATLAB 代码: 读入图像:使用 imread 函数读取包含车道线的图像。 图像预处理:为了减少噪音和突出车道线,可以对图像进行预处理。通常,可以采用以下步骤: 将图像转换为灰度图像:使用 rgb2gray 函数将彩色图

    2024年02月11日
    浏览(43)
  • 基于混沌集成决策树的电能质量复合扰动识别(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 PQDs 信号模型和波形生成 2.2 对电能质量

    2024年02月06日
    浏览(43)
  • 【图像处理】从点云数据中提取边界(识别和追踪)(Matlab代码实现)

     👨‍🎓 个人主页: 研学社的博客   💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉

    2024年02月14日
    浏览(39)
  • 姿态识别、手势识别(附代码)

    姿态识别技术是一种基于计算机视觉的人体姿态分析方法,可以通过分析人体的姿态,提取出人体的关键点和骨架信息,并对人体的姿态进行建模和识别。随着深度学习技术的发展,近年来姿态识别技术得到了广泛的应用和研究,其中Pose是一种基于深度学习的姿态识别工具包

    2023年04月25日
    浏览(43)
  • OpenCV-手势语言识别

    本部分包括Python环境、TensorFlow环境和OpenCV-Python环境。 需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需的配置,下载地址为:https://www.anaconda.com/,也可以下载虚拟机在Linux环境下运行代码。 打开Anaconda Prompt,输入清华仓库镜像,输入命令: conda config–

    2024年02月11日
    浏览(53)
  • 【语音识别】基于主成分分析PCA结合最近邻KNN实现声音自动分类附matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年04月27日
    浏览(68)
  • 皮尔逊相关系数及代码实现(C语言+MATLAB)

    皮尔逊相关系数,常用于度量两个变量X和Y之间的相关性(线性相关)。本文通过介绍其 概念定义、数学公式 ,进而引出其 适用场合 ,并基于 MATLAB和C语言 对皮尔逊相关系数分别进行了 代码实现 。 在统计学中, 皮尔逊相关系数( Pearson correlation coefficient) ,又称皮尔逊积

    2024年02月06日
    浏览(42)
  • 基于OpenCV的简易实时手势识别(含代码)

    这是我大一寒假时写着玩的,非常简陋。基于凸包检测,所以实际上是计算指尖数量判断1~5的手势。又为1 ~3手势赋了控制鼠标操作的功能(但不能移动鼠标,而且因为手势识别不太准确所以这个功能实现得很废/doge)。(才疏学浅,希望有生之年能写个更好的 版本信息:Vi

    2024年02月03日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包