Spark DataFrame:从底层逻辑到应用场景的深入解析

这篇具有很好参考价值的文章主要介绍了Spark DataFrame:从底层逻辑到应用场景的深入解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文将深入探讨Spark DataFrame的底层逻辑、发展由来以及应用场景。通过了解DataFrame的底层逻辑,我们可以更好地理解其在Spark中的重要地位。同时,了解DataFrame的发展历程和应用场景,可以帮助我们更好地掌握这一强大的数据处理工具,并在实际工作中加以运用。

DataFrame的底层逻辑

  1. RDD基础:DataFrame基于RDD(弹性分布式数据集),是对RDD的进一步封装。RDD是Spark的核心数据结构,它代表一个不可变、可分区、里面的元素可计算的弹性数据集。
  2. 模式信息:与RDD相比,DataFrame提供了模式信息,即列的名称和类型。这种模式信息使得Spark SQL可以进行执行优化。
  3. DAG执行:DataFrame的各种变换操作采用惰性机制,只是记录了各种转换的逻辑转换路线图(DAG图),不会发生真正的计算。这个DAG图相当于一个逻辑查询计划,最终会被翻译成物理查询计划,生成RDD DAG,按照之前介绍的RDD DAG的执行方式去完成最终的计算得到结果。

DataFrame的发展由来

  1. 前身:SchemaRDD。在Spark 1.3.0之前,称为SchemaRDD,之后更名为DataFrame。
  2. 特点:DataFrame是Spark对大规模结构化数据处理需求的不断演进和优化的结果,为Spark提供了更高效、更灵活、更强大的数据操作能力。
  3. 优势:与RDD和Dataset相比,DataFrame提供了更丰富的数据操作功能和更高的查询效率。同时,DataFrame可以轻松集成多种数据源,如CSV、Excel、JSON、SQL等,为数据分析和处理提供了便利。

DataFrame的应用场景文章来源地址https://www.toymoban.com/news/detail-819890.html

  1. 数据清洗和处理:利用DataFrame提供的函数和操作,可以方便地处理缺失值、重复值和异常值,进行数据清洗和预处理。
  2. 数据探索和可视化:通过DataFrame,用户可以快速了解数据的分布、统计信息等,并进行可视化展示和图表制作。
  3. 数据转换和整合:借助DataFrame的多数据源导入和导出功能,可以实现不同数据格式和来源的数据转换和整合。
  4. 机器学习和数据分析:通过DataFrame进行特征工程、模型训练和评估等操作,实现机器学习和数据分析任务。
  5. 批处理和流处理:利用DataFrame进行批处理和流处理,满足实时数据处理和分析的需求。

到了这里,关于Spark DataFrame:从底层逻辑到应用场景的深入解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark(15):SparkSQL之DataFrame

    目录 0. 相关文章链接 1. DataFrame的作用 2. 创建DataFrame 3. SQL 语法 4. DSL 语法 5. RDD 转换为 DataFrame 6. DataFrame 转换为 RDD  Spark文章汇总          Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation 操作也有

    2024年02月13日
    浏览(41)
  • Spark RDD、DataFrame、DataSet比较

    在Spark的学习当中,RDD、DataFrame、DataSet可以说都是需要着重理解的专业名词概念。尤其是在涉及到数据结构的部分,理解清楚这三者的共性与区别,非常有必要。 RDD,作为Spark的核心数据抽象,是Spark当中不可或缺的存在,而在SparkSQL中,Spark为我们提供了两个新的抽象,分别

    2024年02月04日
    浏览(36)
  • Spark SQL、DataFrame、DataSet是什么

    在很多情况下,开发人员并不了解Scala语言,也不了解Spark常用的API,但又非常想要使用Spark框架提供的强大的数据分析能力。Spark的开发工程师们考虑到了这个问题,于是利用SQL语言的语法简洁、学习门槛低以及在编程语言中普及程度和流行程度高等诸多优势,开发了Spark S

    2024年02月12日
    浏览(45)
  • 13 | Spark SQL 的 DataFrame API

    Apache Spark SQL 提供了一组强大的 API 用于结构化数据的处理和分析。比如 DataFrame API DataFrame API :DataFrame 是 Spark SQL 中的核心数据结构,它是一个分布式的带有命名列的数据集,类似于传统数据库表或 Pandas 数据帧。DataFrame API 提供了多种操作和转换方法,包括选择、过滤、分组

    2024年02月10日
    浏览(38)
  • Spark DataFrame join后移除重复的列

    在Spark,两个DataFrame做join操作后,会出现重复的列。例如: 其schema如下: 我们在继续操作这个DataFrame时,可能就会报错,如下:org.apache.spark.sql.AnalysisException: Reference ‘movieId’ is ambiguous 解决方案有两种方法可以用来移除重复的列 方法一:join表达式使用字符串数组(用于

    2024年01月21日
    浏览(42)
  • Spark SQL实战(04)-API编程之DataFrame

    Spark Core: SparkContext Spark SQL: 难道就没有SparkContext? 2.x之后统一的 1.x的Spark SQL编程入口点 SQLContext HiveContext Spark SQL中,SQLContext、HiveContext都是用来创建DataFrame和Dataset主要入口点,二者区别如下: 数据源支持:SQLContext支持的数据源包括JSON、Parquet、JDBC等等,而HiveContext除了支持

    2023年04月09日
    浏览(43)
  • 【Spark基础】-- RDD 转 Dataframe 的三种方式

    目录 一、环境说明 二、RDD 转 Dataframe 的方法 1、通过 StructType 创建 Dataframe(强烈推荐使用这种方法)

    2024年01月19日
    浏览(34)
  • Spark的核心概念:RDD、DataFrame和Dataset

    Apache Spark,其核心概念包括RDD(Resilient Distributed Dataset)、DataFrame和Dataset。这些概念构成了Spark的基础,可以以不同的方式操作和处理数据,根据需求选择适当的抽象。 RDD是Spark的基本数据抽象,它代表一个不可变、分布式的数据集合。下面我们将更详细地探讨RDD: RDD的特性

    2024年02月04日
    浏览(38)
  • Spark(39):Streaming DataFrame 和 Streaming DataSet 输出

    目录 0. 相关文章链接 1. 输出的选项 2. 输出模式(output mode) 2.1. Append 模式(默认) 2.2. Complete 模式 2.3. Update 模式 2.4. 输出模式总结 3. 输出接收器(output sink) 3.1. file sink 3.2. kafka sink 3.2.1. 以 Streaming 方式输出数据 3.2.2. 以 batch 方式输出数据 3.3. console sink 3.4. memory sink 3.5. fo

    2024年02月13日
    浏览(36)
  • Spark学习——DataFrame清洗HDFS日志并存入Hive中

    目录 1.开启Hadoop集群和Hive元数据、Hive远程连接 2.配置 3.读取日志文件并清洗 4.单独处理第四列的数据——方法一: 5.单独处理第四列的数据——方法二:  6.单独处理第四列的数据——方法三:  7.数据清洗结果展示 8.存入Hive中 9.DataGrip中的代码 HDFS日志文件内容: 我们要将

    2023年04月12日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包