【离散数学】偏序和全序的区别与解释、哈斯图

这篇具有很好参考价值的文章主要介绍了【离散数学】偏序和全序的区别与解释、哈斯图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 集合上的关系问题: 假设A是一个集合 {1,2,3} ;R是集合A上的关系,例如{<1,1>,<2,2>,< 3,3>,<1,2>,<1,3>,<2,3>}
自反性:任取一个A中的元素x,如果都有<x,x>在R中,那么R是自反的。
对称性:任取两个A中的元素x,y,如果<x,y> 在关系R上,那么<y,x> 也在关系R上,那么R是对称的。
反对称性:任取两个A中元素x,y(x!=y),如果<x,y> 在关系R上,那么<y,x> 不在关系R上,那么R是反对称的。
传递性:任取三个A中元素x,y,z,如果<x,y>,<y,z> 在关系R上,那么 <x,z> 也在关系R上,那么R是传递的。

2. 偏序: 设R是非空集合A上的关系,如果R是自反的,反对称的,和传递的,则称R是A上的偏序关系。
偏序的定义:设R是集合A上的一个二元关系,若R满足:
Ⅰ 自反性:对任意x∈A,有xRx;
Ⅱ 反对称性(即反对称关系):对任意x,y∈A,若xRy,且yRx,则x=y;
Ⅲ 传递性:对任意x, y,z∈A,若xRy,且yRz,则xRz。 则称R为A上的偏序关系。

3. 全序: 如果R是A上的偏序关系,那么对于任意的A集合上的 x,y,都有 x <= y,或者 y <= x,二者必居其一,那么则称R是A上的全序关系。
全序的定义:设集合X上有一全序关系,如果我们把这种关系用 ≤ 表述,则下列陈述对于 X 中的所有 a, b 和 c 成立:
如果 a ≤ b 且 b ≤ a 则 a = b (反对称性)
如果 a ≤ b 且 b ≤ c 则 a ≤ c (传递性) a ≤ b 或 b ≤ a (完全性)
注意:完全性本身也包括了自反性。 所以,全序关系必是偏序关系

所以可以看到,全序也是一种偏序。偏序究竟在说啥,关键在于反对称性上,就是说,<x,y> 在关系R上,那么 <y,x>不在关系R上,那我问你,<y,x>关系是啥,就是未知。所以说偏序就在于你的集合A={1,2,3,4},有一些元素的关系根据R你是得不出的。那么既然你不知道这个<y,x>,那么全序关系上,就多加一个条件,都有 x <= y,或者 y <= x,二者必居其一。

4.哈斯图:
偏序和全序,离散数学,线性代数
偏序和全序,离散数学,线性代数
5. 最大元(最小元)&极大元(极小元)
偏序和全序,离散数学,线性代数
6. 上界(上确界)&下界(下确界)
偏序和全序,离散数学,线性代数
6. 全序关系的哈斯图
全序关系的哈斯图将集合中的元素排成一个线,像一条链子,这充分体现了全序集可以作线序集或链的原因。
偏序和全序,离散数学,线性代数

参考博客:
【1】全序与偏序关系文章来源地址https://www.toymoban.com/news/detail-819960.html

到了这里,关于【离散数学】偏序和全序的区别与解释、哈斯图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【离散数学】gpt教我学数学2

    对于给定的A、B和f,判断f是否为从A到B的函数:f:A→B.如果是,说明f是否为单射、满射、双射的. A=B=R笛卡尔积R,f(x,y)=y+1,x+1 对于给定的集合 A = B = R × R A=B=mathbb{R}timesmathbb{R} A = B = R × R 和函数 f : A → B f:Arightarrow B f : A → B , f ( ⟨ x , y ⟩ ) = ⟨ y + 1 , x + 1 ⟩ f(langle x,

    2024年02月09日
    浏览(43)
  • 【离散数学】gpt教我学数学6

    设A是n元集(n=1),则从A到A的函数中有几个双射函数,有几个单射函数? 设 A A A 为 n n n 元集,下面分别计算从 A A A 到 A A A 的双射函数和单射函数的数量: 双射函数的数量: 一个双射函数 f : A → A f:Arightarrow A f : A → A 必须是一一对应的,即 f f f 必须是一个双射。因此,可

    2024年02月10日
    浏览(32)
  • 离散数学·集合论(1)

    集合是什么:一组无序对象的集合 集合里有什么:元素(即集合中的对象称为元素) 集合的描述方法:枚举法,集合构建式符号 特殊的集合:全集,空集(没有任何元素,符号为∅)  1.集合也可以成为集合的元素,譬如幂集   2.空集不等同于包含空集的集合,∅  ≠ { ∅

    2024年02月07日
    浏览(35)
  • 【离散数学】4. 图论

    1.数理逻辑 2. 集合论 3. 代数系统 4. 图论 图:点+边+边与点的映射函数 连通性与判别 欧拉图与哈密尔顿图 二分图和平面图与欧拉公式 树及生成树 单源点最短路径:Dijkstra算法 对偶图 4.1.1 图 一个图G是一个三重组 V ( G ) , E ( G ) , Φ G V(G),E(G),Phi_G V ( G ) , E ( G ) , Φ G ​ V(G)是一

    2024年02月10日
    浏览(36)
  • 离散数学组合计数

    主要内容 加法法则和乘法法则 排列与组合 二项式定理与组合恒等式 多项式定理 加法法则 乘法法则 分类处理与分步处理 问题1:某旅游团从南京到上海,可以乘骑车,也可以乘火车,假定骑车每日有三班,火车每日有2班,那么一天中从南京到上海共有多少种不同的走法?

    2024年02月01日
    浏览(39)
  • 离散数学——图论

    图的定义 现实世界中许多现象能用某种图形表示,这种图形是由一些点和一些连接两点间的连线所组成。 例子:a,b,c,d 4个篮球队进行友谊比赛。为了表示4个队之间比赛的情况,我们作出图7.1.1的图形。在图中4个小圆圈分别表示这4个篮球队,称之为 结点 。如果两队

    2024年02月02日
    浏览(189)
  • [离散数学]图论

    点相同 边相同 $$ 必要条件 节点数相同 边相同 度数相同节点数目相同 m = C n 2 = 5 ∗ 4 / 2 = 10 m=C_n^2=5*4/2=10 m = C n 2 ​ = 5 ∗ 4/2 = 10 n = 5 n=5 n = 5 由推论 m ≤ 3 n − 6 le3n-6 ≤ 3 n − 6 得 m ≤ 9 le9 ≤ 9 相互矛盾 ∑ d e g ( v i ) = 2 e = 2 V − 2 sum deg(v_i)=2e =2V -2 ∑ d e g ( v i ​ ) = 2 e =

    2024年02月05日
    浏览(200)
  • 头歌实训-离散数学-图论!

    5阶无向完全图的边数为:10 设图 G 有 n 个结点, m 条边,且 G 中每个结点的度数不是 k ,就是 k+1 ,则 G 中度数为 k 的节点数是: n(k+1)-2m 若一个图有5个顶点,8条边,则该图所有顶点的度数和为多少?16 他让输出关联矩阵和邻接矩阵这不简单么? 我是直接摆烂了 输出个球呀

    2024年02月04日
    浏览(68)
  • 离散数学 图论

    1、V,E是一个图 2、零图:图的边集E为空集 3、平凡图: 只有一个结点 的零图 4、平行边: 5、多重图:有平行边的图 6、简单无向图:一个无向图( 没有平行边 )( 没有自回路 ) 7、简单有向图:一个有向图( 没有平行边 )( 没有自回路 ) 8、简单图:( 没有平行边 )( 没有自回路 )的

    2024年02月08日
    浏览(34)
  • 离散数学:图的基本概念

    本帖子讨论图的基本概念,这一章,我们将利用有序对和二元关系的概念定义图。图分为了无向图和有向图,他们有共性也有区别,请大家注意体会,用联系和辩证的观点去认识。 注意无向图和有向图的表示,最大区别在于边的集合的表示,无向图中边集为无序集VV的子集,

    2024年02月09日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包