自然语言处理--概率最大中文分词

这篇具有很好参考价值的文章主要介绍了自然语言处理--概率最大中文分词。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自然语言处理附加作业--概率最大中文分词

一、理论描述

中文分词是指将中文句子或文本按照语义和语法规则进行切分成词语的过程。在中文语言中,词语之间没有明显的空格或标点符号来分隔,因此需要通过分词工具或算法来实现对中文文本的分词处理。分词的准确性和效率对于中文自然语言处理和信息检索等领域具有重要意义。常用的中文分词工具包括jieba、HanLP等。

二、算法描述

本文实现概率最大中文分词算法,具体算法描述如下:

思路是使用动态规划的方法,通过计算每个子串的最大概率来得到整个句子的最大概率。具体的实现步骤如下:

  1. 首先,根据给定的词频文件,获取词频字典word_prob,其中键为词,概率值为取自然对数后的结果。
  2. 初始化max_len为最大词长度,max_sentence和prev_word数组长度为句子长度,每项均为0
  3. 遍历句子中的每个字符,以当前字符为起点,向后最多遍历max_len个字符,获取子串,并在词频字典中查找是否存在该子串如果当前位置不是句子的起始位置,则将前面子串的最大概率加上当前子串的概率
  4. 如果子串在词频字典中存在,则计算其累计概率。累计概率的计算方式为将当前子串的概率加上前面子串的最大概率,即P'(word) = P(word) * P'(prev_word)。如果计算出来的累计概率小于当前位置的最大概率,则更新最大概率和起始下标
  5. 循环结束后,根据max_sentence数组记录的起始下标,从后往前依次获取每个词,并将其添加到结果列表中。最后将结果列表反转,得到最终的分词结果

该算法核心思想是通过动态规划来计算每个子串的最大概率,并根据最大概率和起始下标来获取分词结果

三、详例描述

以句子“结合成分子时”为例,详细描述算法如下:

  1. 根据词频文件,获取词频字典word_prob,其中键为词,值为词频
  2. 初始化,max_sentence用于存储每个子串的最大概率,prev_word用于记录每个子串的起始下标
  3. 循环遍历句子中的每个位置和每个子串:
    • 当i=0,j=0时,当前位置为句子的第一个字符word = ‘对’,查找词典中‘对’的概率temp_prob为0.003388, max_sentence[0]=0.003388说明sentence[0, 0]当前的最大概率,prev_word[0]=0表示sentence[0]的词起始下标为0
    • 当i=0,j=1时,word = ‘对外’,查找词典中‘对’的概率为7.5e-05;

max_sentence[1] = 7.5e-05,表示sentence[0, 1]当前的最大概率;prev_word[1] = 0,表示“对外”的起始下标为0,说明“对外”此时为累计概率最大的词

    • 当i=0,j=2、3时,在词典中不存在,直接跳出循环
    • 当i=1,j=0时,word = ‘外’,概率为0.00025,需要计算其累计概率P’(外) = P(外) * P’(对) = 0.00025 * max_sentence [0],判断其是否大于max_sentence[1],即是否大于P’(对外),若是,则替换max_sentence[1],并将prev_word[1]改为1。当前是小于,故不会替换,以此类推
  1. 循环结束后,max_sentence中的最后一个元素即为整个句子的最大概率。
  2. 根据prev_word中记录的起始下标,从后往前依次获取每个词,并将其添加到结果列表中,将结果列表反转,得到最终的分词结果为`['结合', '成', '分子', '时',‘。’]`。

四、软件演示

输入‘结合成分子时。’

输出‘['结合', '成', '分子', '时', '。']’

自然语言处理--概率最大中文分词,自然语言处理,自然语言处理,中文分词,人工智能

自然语言处理--概率最大中文分词,自然语言处理,自然语言处理,中文分词,人工智能

五、问题和总结

该算法是一种基于概率的最大中文分词算法,通过计算词的累计概率来寻找最优的切分结果。尽管该算法简单易实现,但存在一些问题,如未登录词处理、位置信息考虑、语言模型应用和歧义问题等。因此,在实际应用中,可能需要结合其他技术或算法来改进分词的准确性和效果文章来源地址https://www.toymoban.com/news/detail-819981.html

到了这里,关于自然语言处理--概率最大中文分词的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【自然语言处理】自然语言处理 --- NLP入门指南

    NLP的全称是 Natuarl Language Processing ,中文意思是自然语言处理,是人工智能领域的一个重要方向 自然语言处理(NLP)的一个最伟大的方面是跨越多个领域的计算研究,从人工智能到计算语言学的多个计算研究领域都在研究计算机与人类语言之间的相互作用。它主要关注计算机

    2024年02月03日
    浏览(64)
  • [自然语言处理] 自然语言处理库spaCy使用指北

    spaCy是一个基于Python编写的开源自然语言处理库。基于自然处理领域的最新研究,spaCy提供了一系列高效且易用的工具,用于文本预处理、文本解析、命名实体识别、词性标注、句法分析和文本分类等任务。 spaCy的官方仓库地址为:spaCy-github。本文主要参考其官方网站的文档,

    2024年02月15日
    浏览(99)
  • 自然语言处理从入门到应用——自然语言处理的常见任务

    分类目录:《自然语言处理从入门到应用》总目录 语言模型(Language Model,LM)(也称统计语言模型)是描述自然语言概率分布的模型,是一个非常基础和重要的自然语言处理任务。利用语言模型,可以计算一个词序列或一句话的概率,也可以在给定上文的条件下对接下来可

    2024年02月07日
    浏览(65)
  • 【数据挖掘与人工智能自然语言处理】自然语言处理和人工智能:如何利用自然语言处理技术进行数据挖掘

    作者:禅与计算机程序设计艺术 随着互联网和大数据时代的到来,数据挖掘已成为各个行业的热门话题。数据挖掘的核心在于发现数据中的有价值信息,而自然语言处理(NLP)技术是实现这一目标的重要手段。本文旨在通过自然语言处理技术进行数据挖掘,为数据挖掘提供一

    2024年02月05日
    浏览(101)
  • 以ChatGPT为例进行自然语言处理学习——入门自然语言处理

    ⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨‍🎓。 如果觉得本文能帮到您, 麻烦点个赞 👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️ Qt5.9专栏 定期更新Qt的一些项目Demo

    2023年04月23日
    浏览(82)
  • 自然语言编程系列(二):自然语言处理(NLP)、编程语言处理(PPL)和GitHub Copilot X

           编程语言处理的核心是计算机如何理解和执行预定义的人工语言(编程语言),而自然语言处理则是研究如何使计算机理解并生成非正式、多样化的自然语言。GPT-4.0作为自然语言处理技术的最新迭代,其编程语言处理能力相较于前代模型有了显著提升。Copilot X 构建于

    2024年02月20日
    浏览(68)
  • 自然语言处理:大语言模型入门介绍

    随着自然语言处理(Natural Language Processing, NLP)的发展,此技术现已广泛应用于文本分类、识别和总结、机器翻译、信息提取、问答系统、情感分析、语音识别、文本生成等任务。 研究人员发现扩展模型规模可以提高模型能力,由此创造了术语——大语言模型(Large Language

    2024年02月12日
    浏览(59)
  • 自然语言处理的发展

            自然语言处理的发展大致经历了四个阶段:萌芽期、快速发展期、低谷的发展期和复苏融合期。 萌芽期(1956年以前):这个阶段可以看作自然语言处理的基础研究阶段。人类文明经过了几千年的发展,积累了大量的数学、语言学和物理学知识,这些知识不仅是计

    2024年01月20日
    浏览(53)
  • 自然语言处理基础

    自然语言处理是人工智能能够通过图灵测试的重要工具。 词性标注:把每句话的各个单词的词性标注出来,例如:形容词、名词、动词 named entity recognition命名实体的识别:识别哪些单词是真实世界中的实体,例如:人名、地名、机构名、时间等 co-reference共指消解:句子中的

    2024年02月07日
    浏览(46)
  • 自然语言处理-NLP

    目录 自然语言处理-NLP 致命密码:一场关于语言的较量 自然语言处理的发展历程 兴起时期 符号主义时期 连接主义时期 深度学习时期 自然语言处理技术面临的挑战 语言学角度 同义词问题 情感倾向问题 歧义性问题 对话/篇章等长文本处理问题 探索自然语言理解的本质问题

    2024年02月11日
    浏览(81)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包