【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类

这篇具有很好参考价值的文章主要介绍了【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

在深度学习的世界中,图像分类任务是一个经典的问题,它涉及到识别给定图像中的对象类别。CIFAR-10数据集是一个常用的基准数据集,包含了10个类别的60000张32x32彩色图像。在本博客中,我们将探讨如何使用PyTorch框架创建一个简单的卷积神经网络(CNN)来对CIFAR-10数据集中的图像进行分类。

在下一篇博客中,我们将尝试不断优化模型结构和训练过程,以达到更高的准确率和性能。

引用

关于卷积神经网络的原理,感兴趣的请参阅我的另一篇博客,里面只使用numpy和基础函数组建了一个卷积神经网络模型,并完成训练和测试
【手搓深度学习算法】从头创建卷积神经网络

背景

卷积神经网络是深度学习中用于图像识别和分类的一种强大工具。它们能够自动从图像中提取特征,并通过一系列卷积层、池化层和全连接层来学习图像的复杂模式。

CIFAR-10数据集包含了飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车等10个类别的图像。每个类别有6000张图像,其中50000张用于训练,10000张用于测试。
【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类,天网计划,pytorch,cnn,分类

代码解析

我们的目标是构建一个能够处理CIFAR-10数据集的CNN模型。以下是我们的模型结构和数据处理流程的简要概述:

数据预处理

我们首先定义了unpickle函数来加载CIFAR-10数据集的批次文件。read_data函数用于读取数据,将其转换为适合卷积网络输入的格式,并进行归一化处理。我们还提供了一个选项来将图像转换为灰度。

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

def read_data(file_path, gray = False, percent = 0, normalize = True):
    data_src = unpickle(file_path)
    np_data = np.array(data_src["data".encode()]).astype("float32")
    np_labels = np.array(data_src["labels".encode()]).astype("float32").reshape(-1,1)
    single_data_length = 32*32 
    image_ret = None
    if (gray):
        np_data = (np_data[:, :single_data_length] + np_data[:, single_data_length:(2*single_data_length)] + np_data[:, 2*single_data_length : 3*single_data_length])/3
        image_ret = np_data.reshape(len(np_data),32,32)
    else:
        image_ret = np_data.reshape(len(np_data),32,32,3)
    
    if(normalize):
        mean = np.mean(np_data)
        std = np.std(np_data)
        np_data = (np_data - mean) / std
    
    if (percent != 0):
        np_data = np_data[:int(len(np_data)*percent)]
        np_labels = np_labels[:int(len(np_labels)*percent)]
        image_ret = image_ret[:int(len(image_ret)*percent)]
    num_classes = len(np.unique(np_labels))
    np_data, np_labels = convert_to_conv_input(np_data, np_labels)
    return np_data, np_labels, num_classes, image_ret 

网络结构

Conv类定义了我们的CNN模型,它包含一个卷积层、一个最大池化层、一个ReLU激活函数和一个全连接层。在forward方法中,我们指定了数据通过网络的流程。

class Conv(th.nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super(Conv, self).__init__()
        self.conv = th.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)
        self.pool = th.nn.MaxPool2d(kernel_size=2,stride=2)
        self.relu = th.nn.ReLU()
        self.linear = th.nn.Linear(16*15*15, 10)
        self.softmax = th.nn.Softmax(dim=1)
        
    def forward(self, x):
        x = self.conv(x) #32,16,30,30
        x = self.pool(x) #32,16,15,15
        x = self.relu(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        return x
    
    # 在predict函数中,额外调用了softmax,将线性层的10个特征值转化为概率,在前向传播中不用是因为pytorch中交叉熵函数自带了softmax
    def predict(self,x):
        x = self.forward(x)
        x = self.softmax(x)
        return x
卷积层、池化层、线性层的输入特征数量的计算方法

线性层的输入特征个数取决于前面层的输出。
具体来说,线性层的输入特征个数是卷积层和池化层处理后的输出特征图的总元素数量。

卷积层定义如下:

self.conv = th.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)

这里,in_channels=3 表示输入图像有3个颜色通道(RGB),out_channels=16 表示卷积层将输出16个特征图。

接下来是池化层:

self.pool = th.nn.MaxPool2d(kernel_size=2, stride=2)

kernel_size=2,表示池化窗口的大小是2x2。stride=2 表示池化操作的步长是2。

为了计算线性层的输入特征个数,我们需要知道卷积层和池化层之后的输出特征图的大小。这可以通过计算公式得到,或者通过在实际数据上运行网络的前向传播来确定。

计算公式如下:

对于卷积层,输出特征图的大小可以通过以下公式计算:

H_out = (H_in + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1
W_out = (W_in + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1

对于池化层,输出特征图的大小也可以通过类似的公式计算。

由于没有指定paddingdilation,查看函数定义可知它们的默认值分别是0和1。因此,如果输入图像的大小是32x32,卷积层之后的大小将是:

H_out = (32 - 1 * (3 - 1) - 1) / 1 + 1 = 30
W_out = (32 - 1 * (3 - 1) - 1) / 1 + 1 = 30

因此,卷积层的输出将有16个30x30的特征图。

然后,池化层将这些特征图的大小减半(因为kernel_size=2stride=2),所以输出将是16个15x15的特征图。

最后,线性层的输入特征个数将是这些特征图的总元素数量:

num_features = out_channels * H_out_pool * W_out_pool = 16 * 15 * 15 = 3600

因此,线性层的正确定义应该是:

self.linear = th.nn.Linear(3600, num_classes)

训练过程

main函数中,我们初始化了模型、损失函数和优化器。我们使用随机梯度下降(SGD)作为优化算法,并设置了学习率。接着,我们进入了训练循环,其中包括前向传播、损失计算、反向传播和权重更新。

loss_function = th.nn.CrossEntropyLoss()
optimizer = th.optim.SGD(conv_model.parameters(), lr = lr)

测试和评估

训练完成后,我们使用训练好的模型对测试数据进行评估,并计算准确率。我们还提供了一个predict方法,它在给定输入数据后返回模型的预测概率。

def predict(self,x):
        x = self.forward(x)
        x = self.softmax(x)
        return x
softmax激活函数

Softmax 激活函数是一种广泛使用的函数,它将一个实数向量转换为概率分布。在深度学习中,它常常用于多类别分类问题的输出层。

Softmax 函数的定义如下:

softmax ( z ) i = e z i ∑ j e z j \text{softmax}(z)_i = \frac{e^{z_i}}{\sum_{j} e^{z_j}} softmax(z)i=jezjezi

其中 z z z 是输入向量, z i z_i zi z z z 的第 i i i 个元素, softmax ( z ) i \text{softmax}(z)_i softmax(z)i 是输出向量的第 i i i 个元素。

Softmax 函数的主要特性是它的输出是一个概率分布,即所有输出元素的值都在 ( 0 , 1 ) (0, 1) (0,1) 区间内,且所有输出元素的值之和为 1。这使得 Softmax 函数非常适合用于表示概率。

Softmax 函数的一个重要性质是它是连续的,且其导数容易计算。这使得 Softmax 函数在深度学习中的反向传播过程中非常有用。

Softmax 函数的导数如下:

∂ ∂ z i softmax ( z ) i = softmax ( z ) i ( 1 − softmax ( z ) i ) \frac{\partial}{\partial z_i}\text{softmax}(z)_i = \text{softmax}(z)_i(1 - \text{softmax}(z)_i) zisoftmax(z)i=softmax(z)i(1softmax(z)i)

这个导数表达式表明,对于 Softmax 函数的输出 y i y_i yi,其对输入 z i z_i zi 的导数等于 y i ( 1 − y i ) y_i(1 - y_i) yi(1yi)。这个导数表达式在反向传播过程中非常有用,因为它可以直接用于计算梯度。

训练过程中没有使用softmax层,是应为torch的交叉熵损失函数已经包含了softmax的操作,如果叠加使用,可能得到错误的结果。

运行结果

作为一个简单的卷积模型,在测试集上得到了60%的准确率
【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类,天网计划,pytorch,cnn,分类

完整代码

本文不提供完整代码,因为随着我的微调优化过程,已经没有这个版本的基线代码了,想要最终代码的欢迎阅读下一篇博客 “记一次卷积网络调优的过程”
【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类,天网计划,pytorch,cnn,分类

注意点

  • 数据预处理:确保数据被正确地加载和归一化,这对模型的训练效果至关重要。
  • 模型结构:模型的层数和参数需要根据任务的复杂性来调整。过于简单的模型可能无法捕捉到数据中的复杂特征,而过于复杂的模型可能会导致过拟合。
  • 损失函数:我们使用交叉熵损失函数,它适用于多类别分类问题。
  • 优化器:在每次迭代前,记得清除累积的梯度,以避免错误的梯度更新。

可能的优化点

  • 学习率调整:可以尝试使用学习率调度器来在训练过程中调整学习率,以改善模型的收敛速度和性能。
  • 权重初始化:尝试不同的权重初始化方法,以帮助模型更快地收敛。
  • 正则化技术:使用如Dropout、L2正则化等技术来减少过拟合。
  • 数据增强:通过对训练图像进行随机变换(如旋转、缩放、裁剪等),可以增加模型的泛化能力。
  • 更深的网络:考虑增加更多的卷积层和池化层来提取更复杂的特征。
  • 批量归一化:在卷积层之后添加批量归一化层,以稳定训练过程并加速收敛。

结论

通过本博客,我们展示了如何使用PyTorch框架构建一个简单的CNN模型,并在CIFAR-10数据集上进行训练和测试。虽然我们的模型结构相对简单,但它为理解深度学习和图像分类提供了一个很好的起点。在下一篇博客中,我们将尝试不断优化模型结构和训练过程,以达到更高的准确率和性能。文章来源地址https://www.toymoban.com/news/detail-819989.html

到了这里,关于【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch实战:卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类

    目录 前言 一、卷积神经网络概述 二、卷积神经网络特点 卷积运算 单通道,二维卷积运算示例 单通道,二维,带偏置的卷积示例 带填充的单通道,二维卷积运算示例 Valid卷积 Same卷积 多通道卷积计算 1.局部感知域 2.参数共享 3.池化层 4.层次化提取  三、卷积网络组成结构

    2024年02月07日
    浏览(54)
  • [PyTorch][chapter 33][卷积神经网络]

    前言    参考: 《数字图像处理与机器视觉》 第五章 空间域图像增强,      图像卷积: 空间域图像增强      图像增强是根据特定需要突出一副图像中的某些信息,同时削弱或去除 某些不需要信息的处理方法,其主要目的是是的处理后的图像对某种特定的应用来说 比原

    2024年02月05日
    浏览(40)
  • 卷积神经网络——上篇【深度学习】【PyTorch】

    5.1.1、理论部分 全连接层后,卷积层出现的意义? 一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。 (convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据

    2024年02月12日
    浏览(32)
  • 【深入了解pytorch】PyTorch卷积神经网络(CNN)简介

    卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉任务中广泛应用的深度学习模型。它通过卷积层、池化层和全连接层等组件,能够有效地提取图像特征并实现高准确率的图像分类、目标检测和语义分割等任务。本文将详细介绍CNN的原理,并演示如何使用PyTor

    2024年02月16日
    浏览(41)
  • PyTorch入门学习(八):神经网络-卷积层

    目录 一、数据准备 二、创建卷积神经网络模型 三、可视化卷积前后的图像 一、数据准备 首先,需要准备一个数据集来演示卷积层的应用。在这个示例中,使用了CIFAR-10数据集,该数据集包含了10个不同类别的图像数据,用于分类任务。使用PyTorch的 torchvision 库来加载CIFAR-1

    2024年02月07日
    浏览(43)
  • 【PyTorch】记一次卷积神经网络优化过程

    在深度学习的世界中,图像分类任务是一个经典的问题,它涉及到识别给定图像中的对象类别。CIFAR-10数据集是一个常用的基准数据集,包含了10个类别的60000张32x32彩色图像。在上一篇博客中,我们已经探讨如何使用PyTorch框架创建一个简单的卷积神经网络(CNN)来对CIFAR-10数

    2024年01月24日
    浏览(46)
  • Pytorch:搭建卷积神经网络完成MNIST分类任务:

    2023.7.18 MNIST百科: MNIST数据集简介与使用_bwqiang的博客-CSDN博客 数据集官网:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges 数据集将按以图片和文件夹名为标签的形式保存:  代码:下载mnist数据集并转还为图片  训练代码: 测试代码: 分类正确率不错:

    2024年02月17日
    浏览(43)
  • 【Pytorch】基于卷积神经网络实现的面部表情识别

    作者:何翔 学院:计算机学院 学号:04191315 班级:软件1903 转载请标注本文链接: https://blog.csdn.net/HXBest/article/details/121981276 面部表情识别 (Facial Expression Recognition ) 在日常工作和生活中,人们情感的表达方式主要有:语言、声音、肢体行为(如手势)、以及面部表情等。在这

    2024年02月04日
    浏览(71)
  • pytorch集智-5手写数字识别器-卷积神经网络

    简称:CNN,convolutional neural network 应用场景:图像识别与分类(CNN),看图说话(CNN+RNN)等 优越性:和多层感知机相比,cnn可以识别独特的模式,可以自动从数据中提取特征。一般机器学习需要特征工程,cnn可以自动识别,极大代替或取代了特征工程 和多层感知机原理不同

    2024年01月19日
    浏览(42)
  • 卷积神经网络——下篇【深度学习】【PyTorch】【d2l】

    5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和收敛慢的问题,通过固定每个批次的均值和方差来加速收敛,一般不改变模型精度。批量规范化已经被证明是一种不可或缺的方法,它适用于几乎所有图像分类器。 批量规划是一个线性变换 ,把参数的均值方差给拉

    2024年02月12日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包