Java数据结构与算法:二叉搜索树

这篇具有很好参考价值的文章主要介绍了Java数据结构与算法:二叉搜索树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Java数据结构与算法:二叉搜索树

大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!

什么是二叉搜索树?

在计算机科学中,二叉搜索树(Binary Search Tree,简称BST)是一种常见的树形数据结构,它具有良好的查找和插入性能。每个节点的左子树上所有节点的值小于根节点的值,右子树上所有节点的值大于根节点的值。

二叉搜索树的性质

  1. 对于二叉搜索树的每个节点,其左子树的所有节点值都小于该节点的值。
  2. 对于二叉搜索树的每个节点,其右子树的所有节点值都大于该节点的值。
  3. 对于二叉搜索树的每个节点,其左右子树也分别是二叉搜索树。

二叉搜索树的基本操作

插入节点

在二叉搜索树中插入一个节点,首先需要找到插入的位置。从根节点开始,比较要插入节点的值与当前节点的值,根据大小关系决定向左子树还是右子树移动,直到找到插入位置。

public class BinarySearchTree {
    // 省略其他代码

    public void insert(int value) {
        root = insertRec(root, value);
    }

    private TreeNode insertRec(TreeNode root, int value) {
        if (root == null) {
            root = new TreeNode(value);
            return root;
        }

        if (value < root.data) {
            root.left = insertRec(root.left, value);
        } else if (value > root.data) {
            root.right = insertRec(root.right, value);
        }

        return root;
    }
}

查找节点

在二叉搜索树中查找一个节点,同样从根节点开始比较值,根据大小关系决定向左子树还是右子树移动,直到找到目标节点或者到达叶子节点。

public class BinarySearchTree {
    // 省略其他代码

    public boolean search(int value) {
        return searchRec(root, value);
    }

    private boolean searchRec(TreeNode root, int value) {
        if (root == null) {
            return false;
        }

        if (value == root.data) {
            return true;
        } else if (value < root.data) {
            return searchRec(root.left, value);
        } else {
            return searchRec(root.right, value);
        }
    }
}

二叉搜索树的应用

  1. 排序: 二叉搜索树的中序遍历结果是有序的,可以方便地实现排序操作。
  2. 查找: 通过二叉搜索树的查找操作,可以快速定位节点。
  3. 删除: 通过合理的删除操作,可以高效地删除二叉搜索树中的节点。

希望通过这篇文章,大家能对Java中的二叉搜索树有一个初步的了解。在后续的文章中,我们将深入讨论二叉搜索树的各种操作和优化。文章来源地址https://www.toymoban.com/news/detail-820070.html

到了这里,关于Java数据结构与算法:二叉搜索树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法与数据结构】700、LeetCode二叉搜索树中的搜索

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :二叉搜索树(Binary Search Tree, BST)的性质:所有左子树节点键值 中间节点键值 所有右子树节点键值,并且左右子树都是二叉搜索树。那么我们根据此性质,对比目标值和中间节点,如

    2024年02月10日
    浏览(40)
  • java数据结构与算法刷题-----LeetCode240. 搜索二维矩阵 II

    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完): https://blog.csdn.net/grd_java/article/details/123063846 解题思路 法一:把整个数组遍历一遍,时间复杂度O(m*n) 法二:每一行用二分搜索,那么时间复杂度就是O(m * l o g 2 n log_2{n} l o g

    2024年01月22日
    浏览(56)
  • 数据结构与算法-基础(十)平衡二叉搜索树

    摘要 二叉搜索树的特性-节点的左侧部分比它小,右侧部分比它大,使得二叉搜索树在查找节点有 二分法 的效果,也提高了它的添加和删除处理,毕竟添加和删除也是先查找位置,然后再处理。 平衡二叉搜索树 就是持续保证这样的高效性,进入正题: 二叉搜索树 在添加或

    2024年02月08日
    浏览(46)
  • 【算法与数据结构】98、LeetCode验证二叉搜索树

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :注意不要落入下面你的陷阱,笔者本来想左节点键值中间节点键值右节点键值即可,写出如下代码:   在leetcode执行时遇到下面的错误,再次读题,发现是所有左子树的键值小于

    2024年02月09日
    浏览(35)
  • 数据结构与算法之二叉树: Leetcode 98. 验证二叉搜索树 (Typescript版)

    验证二叉搜索树 https://leetcode.cn/problems/validate-binary-search-tree/ 描述 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树 有效 二叉搜索树定义如下: 节点的左子树只包含 小于 当前节点的数。 节点的右子树只包含 大于 当前节点的数。 所有左子树和右子树自身

    2024年02月16日
    浏览(36)
  • 数据结构与算法(三):树论(树形结构、二叉树、二叉搜索树、红黑树、Btree&B+Tree、赫夫曼树、堆树)

    树论(树形结构、二叉树、二叉搜索树、红黑树、Btree、B+Tree、赫夫曼树、堆树) 在树形结构里面重要的术语: 结点:树里面的元素。 父子关系:结点之间相连的边 子树:当结点大于1时,其余的结点分为的互不相交的集合称为子树 度:一个结点拥有的子树数量称为结点的

    2024年02月01日
    浏览(93)
  • 【Java 数据结构】二叉树

    树是一种 非线性 的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。 有一个特殊的结点,称为根结点,根结点没有前驱结点 除根结点外,其余结点被分成M(M 0)个互不相交的

    2024年02月20日
    浏览(45)
  • 【java数据结构-二叉树(上)】

    🔥个人主页: 努力学编程’ 🔥内容管理: java数据结构 hello,今天带大家学习 数据结构 中非常重要的一个知识点 二叉树 ,二叉树主体的实现使用的是递归的知识,通过二叉树我们可以更好的理解递归的应用。今天就带大家学习一下二叉树的一些知识。 概念 : 树是一种非

    2024年04月08日
    浏览(40)
  • 数据结构之二叉树(Java)

    在这里先说明一下,结点和节点其实一样的,无须关注这个。 1. 概念:树是一种非线性的数据结构,它是由n个有限节点组成一个具有层次关系的集合。 如上图所示,把此种数据结构称作树是因为它看起来像一个倒挂的树。  2. 特点 有一个特殊的节点,称为根节点,它是唯一

    2024年02月07日
    浏览(36)
  • 【Java 数据结构】树和二叉树

    篮球哥温馨提示:编程的同时不要忘记锻炼哦! 目录 1、什么是树? 1.1 简单认识树  1.2 树的概念  1.3 树的表示形式 2、二叉树 2.1 二叉树的概念 2.2 特殊的二叉树 2.3 二叉树的性质 2.4 二叉树性质相关习题 3、实现二叉树的基本操作 3.1 了解二叉树的存储结构 3.2 简单构造一棵

    2024年01月16日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包