算法(4)——前缀和

这篇具有很好参考价值的文章主要介绍了算法(4)——前缀和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、前缀和的定义

二、一维前缀和

三、一维前缀和OJ题

3.1、前缀和

3.2、寻找数组中心下标

3.3、除自身以外数组的乘积

3.4、和为K的数组

3.5、和可被K整除的子数组

3.6、连续数组

四、二位前缀和

4.1、二维前缀和

4.2、矩阵区域和


一、前缀和的定义

对于一个给定的数列A,他的前缀和数中 S 中 S[ i ] 表示从第一个元素到第 i 个元素的总和。

如下图:绿色区域的和就是前缀和数组中的 S [ 6 ]。

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构这里我们需要注意的是:前6个数的和为什么是S【6】呢?数组第6个数下标不应该是5吗?

是的,我们在下表面推导公式会讲到这个问题。

二、一维前缀和

前缀和数组的每一项是可以通过原序列以递推的方式推出来的,递推公式就是:S[ i ] = S[  i - 1 ] + A[ i ]。S[  i - 1 ] 表示前 i - 1 个元素的和,在这基础上加上 A[ i ],就得到了前 i 个元素的和 S [ i ]。

当我们要求的是序列 A 的前 n 个数之和时,如果我们是从下标为 0 的位置开始存储前缀和数组,此公式:sum = S[ r ] - S[ l - 1 ] 显然就无法使用了,为了是这个公式适用于所有情况,我们将从下标为 1 的位置开始存储前缀和,并且将下标为 0 的位置初始化为 0。

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

三、一维前缀和OJ题

3.1、前缀和

【模板】前缀和_牛客题霸_牛客网 (nowcoder.com)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构               算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:

a. 先预处理出来⼀个「前缀和」数组: ⽤ dp[i] 表⽰: [1, i] 区间内所有元素的和,那么 dp[i - 1] ⾥⾯存的就是 [1, i - 1] 区间内所有元素的和,那么:可得递推公式: dp[i] = dp[i - 1] + arr[i] ;
b. 使⽤前缀和数组,「快速」求出「某⼀个区间内」所有元素的和: 当询问的区间是 [l, r] 时:区间内所有元素的和为: dp[r] - dp[l - 1]
代码实现:
#include <iostream>
#include<vector>
using namespace std;

int main() 
{
    int n,q;
    cin>>n>>q;
    vector<int> arr(n+1,0);
    for(int i=1;i<=n;i++) cin>>arr[i];
    vector<long long> dp(n+1,0);
    for(int i=1;i<=n;i++) dp[i]=arr[i]+dp[i-1];
    int l,r;
    while(q--)
    {
        cin>>l>>r;
        cout<<dp[r]-dp[l-1]<<endl;
    }
    return 0;
}

3.2、寻找数组中心下标

724. 寻找数组的中心下标 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构算法思路:

从中⼼下标的定义可知,除中⼼下标的元素外,该元素左边的「前缀和」等于该元素右边的「后缀 和」。
因此,我们可以先预处理出来两个数组,⼀个表⽰前缀和,另⼀个表⽰后缀和。
然后,我们可以⽤⼀个 for 循环枚举可能的中⼼下标,判断每⼀个位置的「前缀和」以及「后缀和」,如果⼆者相等,就返回当前下标。
代码实现:
class Solution {
public:
    int pivotIndex(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> f(n),g(n);
        //前缀和
        for(int i=1;i<n;i++)
            f[i]=nums[i-1]+f[i-1];
        //后缀和
        for(int i=n-2;i>=0;i--)
            g[i]=nums[i+1]+g[i+1];

        for(int i=0;i<n;i++)
        {
            if(g[i]==f[i])
                return i;
        }
        return -1;
    }
};

3.3、除自身以外数组的乘积

238. 除自身以外数组的乘积 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:

注意题⽬的要求,不能使⽤除法,并且要在 O(N) 的时间复杂度内完成该题。那么我们就不能使
⽤暴⼒的解法,以及求出整个数组的乘积,然后除以单个元素的⽅法。 继续分析,根据题意,对于每⼀个位置的最终结果 ret[i] ,它是由两部分组成的:
i. nums[0] * nums[1] * nums[2] * ... * nums[i - 1]
ii. nums[i + 1] * nums[i + 2] * ... * nums[n - 1]
于是,我们可以利⽤前缀和的思想,使⽤两个数组 post 和 suf,分别处理出来两个信息:
i. post 表⽰:i 位置之前的所有元素,即 [0, i - 1] 区间内所有元素的前缀乘积,
ii. suf 表⽰: i 位置之后的所有元素,即 [i + 1, n - 1] 区间内所有元素的后缀乘积,然后再处理最终结果。
代码实现:
class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> g(n),f(n);
        //前缀积
        f[0]=g[n-1]=1;
        for(int i=1;i<n;i++)
            f[i]=f[i-1]*nums[i-1];
        //后缀积
        for(int i=n-2;i>=0;i--)
            g[i]=g[i+1]*nums[i+1];

        vector<int> arr(n);
        for(int i=0;i<n;i++)
        {
            arr[i]=g[i]*f[i];
        }
        return arr;
    }
};

3.4、和为K的数组

560. 和为 K 的子数组 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:

i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的和为 k 的⼦数组」,就要找到有多少个起始位置为 x1, x2, x3... 使得 [x, i] 区间内的所有元素的和为 k 。那么 [0, x] 区间内的和是不是就是 sum[i] - k 了。于是问题就变成:
找到在 [0, i - 1] 区间内,有多少前缀和等于 sum[i] - k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于 sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种 前缀和出现的次数。

代码实现:文章来源地址https://www.toymoban.com/news/detail-820221.html

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) 
    {
        unordered_map<int,int> hash;
        int sum=0,ret=0;
        hash[0]=1;
        for(auto x:nums)
        {
            sum+=x;
            if(hash.count(sum-k))
            {
                ret+=hash[sum-k];
            }
            hash[sum]++;
        }
        return ret;
    }
};

3.5、和可被K整除的子数组

974. 和可被 K 整除的子数组 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:

同余定理
如果 (a - b) % n == 0 ,那么我们可以得到⼀个结论: a % n == b % n 。⽤⽂字叙述就是,如果两个数相减的差能被 n 整除,那么这两个数对 n 取模的结果相同。
例如: (26 - 2) % 12 == 0 ,那么 26 % 12 == 2 % 12 == 2
c++ 中负数取模的结果,以及如何修正「负数取模」的结果
a. c++ 中关于负数的取模运算,结果是「把负数当成正数,取模之后的结果加上⼀个负号」。
例如: -1 % 3 = -(1 % 3) = -1
b. 因为有负数,为了防⽌发⽣「出现负数」的结果,以 (a % n + n) % n 的形式输出保证为正。
例如: -1 % 3 = (-1 % 3 + 3) % 3 = 2
i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的可被 k 整除的⼦数组」,就要找到有多少个起始位置为 x1,x2, x3... 使得 [x, i] 区间内的所有元素的和可被 k 整除。
[0, x - 1] 区间内所有元素之和等于 a [0, i] 区间内所有元素的和等于 b ,可得 (b - a)%k ==0 
由同余定理可得, [0, x - 1] 区间与 [0, i] 区间内的前缀和同余。于是问题就变成:
找到在 [0, i - 1] 区间内,有多少前缀和的余数等于 sum[i] % k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于
sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种前缀和出现的次数。
代码实现:
class Solution {
public:
    int subarraysDivByK(vector<int>& nums, int k) 
    {
        unordered_map<int,int> hash;  //第一个int存余数,第二个存个数
        int sum=0,ret=0;
        hash[0%k]=1; 
        for(auto x:nums)
        {
            sum+=x;
            int r=(sum%k+k)%k;
            if(hash.count(r)) ret+=hash[r];
            hash[r]++;
        }
        return ret;
    }
};

3.6、连续数组

525. 连续数组 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:
稍微转化⼀下题⽬,就会变成我们熟悉的题:
本题让我们找出⼀段连续的区间, 0 1 出现的次数相同。
如果将 0 记为 -1 1 记为 1 ,问题就变成了找出⼀段区间,这段区间的和等于 0
于是,就和 和为 K 的⼦数组 这道题的思路⼀样
i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道最⼤的「以 i 为结尾的和为 0 的⼦数组」,就要找到从左往右第⼀个 x1 使得 [x1, i]
区间内的所有元素的和为 0 。那么 [0, x1 - 1] 区间内的和是不是就是 sum[i] 了。于是问题就变成:
找到在 [0, i - 1] 区间内,第⼀次出现 sum[i] 的位置即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,第⼀个前缀和等于 sum[i]的位置。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边记录第⼀次出现该前缀和的位置。
代码实现:
class Solution {
public:
    int findMaxLength(vector<int>& nums) 
    {
        unordered_map<int,int> hash;
        hash[0]=-1;
        int sum=0,ret=0;
        for(int i=0;i<nums.size();i++)
        {
            sum+=nums[i]==0?-1:1;//当前位置的前缀和,将0变-1
            if(hash.count(sum)) ret=max(ret,i-hash[sum]);
            else hash[sum]=i;
        }
        return ret;
    }
};

四、二位前缀和

和一维前缀和的原理类似,只不过二维前缀和求的是一个矩阵中所有元素的和。
算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

例如:对与 x = 4,y = 3 这么一组输入,就是将原矩阵序列中蓝色区域的元素相加,得到的结果便是前缀和矩阵S中 S[ 4 ][ 3 ] 的值。

例如上图:我们要求蓝色矩阵中所有元素的和。

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

 现在就差最后一步了,怎么求出前缀和矩阵中的每一个值嘞??同理利用递推关系求就阔以啦。

  S[ i ][ j ] = S[ i - 1 ][ j ] + S[ i ][ j - 1 ] - S[ i - 1][ j - 1 ] + a[ i ][ j ]

五、二维前缀和OJ题

4.1、二维前缀和

【模板】二维前缀和_牛客题霸_牛客网 (nowcoder.com)

题目描述:

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:

  • 首先对矩阵进行预处理,得到对应的前缀和矩阵。
  • 利用前缀和矩阵相应区域的加减运算,即可得到对应子矩阵中所有元素的累加和。

图解展示(图中presum[3][4]除了包括绿色部分,还包括其它重叠的部分,其它几项也一样,另外presum[1][1]被多减了一次,所以最后要加一次):

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

代码实现:

#include <iostream>
#include<vector>
using namespace std;

int main() 
{
    int n,m,q;
    cin>>n>>m>>q;
    vector<vector<long long>> arr(n+1,vector<long long>(m+1));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cin>>arr[i][j];
        }
    }

    vector<vector<long long>> dp(n+1,vector<long long>(m+1));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            dp[i][j]=dp[i-1][j]+dp[i][j-1]+arr[i][j]-dp[i-1][j-1];
        }
    }

    int x1,x2,y1,y2;
    while(q--)
    {
        cin>>x1>>y1>>x2>>y2;
        cout<<dp[x2][y2]-dp[x1-1][y2]-dp[x2][y1-1]+dp[x1-1][y1-1]<<endl;
    }
    return 0;
}

4.2、矩阵区域和

1314. 矩阵区域和 - 力扣(LeetCode)

题目描述

算法(4)——前缀和,算法,c++,开发语言,leetcode,数据结构

算法思路:

⼆维前缀和的简单应⽤题,关键就是我们在填写结果矩阵的时候,要找到原矩阵对应区域的「左上
⻆」以及「右下⻆」的坐标
左上⻆坐标: x1 = i - k y1 = j - k ,但是由于会「超过矩阵」的范围,因此需要对 0取⼀个 max 。因此修正后的坐标为: x1 = max(0, i - k), y1 = max(0, j - k) ;
右下⻆坐标: x1 = i + k y1 = j + k ,但是由于会「超过矩阵」的范围,因此需要对 m - 1 ,以及 n - 1 取⼀个 min 。因此修正后的坐标为: x2 = min(m - 1, i + k),
y2 = min(n - 1, j + k) 。 然后将求出来的坐标代⼊到「⼆维前缀和矩阵」的计算公式上即可

代码实现:

class Solution {
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k)    
    {
        int m=mat.size(),n=mat[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));

        //预处理矩阵
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
               dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + mat[i - 1][j - 1];
            }
        }
        //使用前缀和矩阵
        vector<vector<int>> ret(m,vector<int>(n));
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                int x1 = max(0, i - k) + 1, y1 = max(0, j - k) + 1;
                int x2 = min(m - 1, i + k) + 1, y2 = min(n - 1, j + k) + 1;
                ret[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];
            }
        }
        return ret;
    }
};

到了这里,关于算法(4)——前缀和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法与数据结构】343、LeetCode整数拆分

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :博主做这道题的时候一直在思考,如何找到 k k k 个正整数, k k k 究竟为多少合适。从数学的逻辑上来说,将 n n n 均分为 k k k 个数之后, k k k 个数的乘积为最大(类似于相同周长

    2024年01月17日
    浏览(52)
  • 【算法与数据结构】474、LeetCode一和零

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题要找strs数组的最大子集,这个子集最多含有 m m m 个0和 n n n 个1。本题也可以抽象成一个01背包的问题。其中,strs内的元素就是物品,而 m m m 和 n n n 就是背包的维度。 d p [

    2024年01月22日
    浏览(41)
  • 【算法与数据结构】494、LeetCode目标和

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题和这道题【算法与数据结构】1049、LeetCode 最后一块石头的重量 II类似,同样可以转换成01背包问题。下面开始论述。假设添加正号的整数子集和为 p o s i t i v e positive p os i t

    2024年01月20日
    浏览(44)
  • 【算法与数据结构】62、LeetCode不同路径

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :机器人只能向下或者向右移动,那么到达(i,j)位置的路径和(i-1,j)以及(i,j-1)有关。那么我们就得到的动态规划的表达式 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][

    2024年01月18日
    浏览(68)
  • 数据结构算法leetcode刷题练习(1)

    给定一个三角形 triangle ,找出自顶向下的最小路径和。 每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标

    2023年04月24日
    浏览(54)
  • 【python与数据结构】(leetcode算法预备知识)

    笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 1.数字类型: 整数(int):表示整数值,例如 1、-5、100。 浮点数(float):表示带有小数部分的数字,例如 3.14、-0.5、2.0。 复数(complex):表示实部和虚部的复数,例如 2+3j。 2.布尔类型(bool): 表示真(True)或假(

    2024年02月08日
    浏览(39)
  • 【算法与数据结构】377、LeetCode组合总和 Ⅳ

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题明面上说是组合,实际上指的是排列。动态规划排列组合背包问题需要考虑遍历顺序。 d p [ i ] dp[i] d p [ i ] 指的是nums数组中总和为target的元素排列的个数。 d p [ i ] dp[i] d p [

    2024年01月23日
    浏览(42)
  • 【算法与数据结构】63、LeetCode不同路径 II

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :参考【算法与数据结构】62、LeetCode不同路径的题目,可以发现本题仅仅是多了障碍物。我们还是用动态规划来做。有障碍物的地方无法到达,因此路径数量为0,只需要将障碍物位

    2024年02月02日
    浏览(57)
  • 【算法与数据结构】226、LeetCode翻转二叉树

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :这道题的思路很简单,本质上就是遍历每一个节点,然后交换左右节点。我们可以用前中后遍历或者是层次遍历法来做,参考这两篇文章,【算法与数据结构】144、94、145LeetCode二

    2024年02月16日
    浏览(41)
  • 【算法与数据结构】518、LeetCode零钱兑换 II

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题的硬币是无数的,因此本题可以抽象成一个完全背包问题。完全背包和01背包的不同之处在于完全背包式从前往后遍历的。在本题的完全背包问题中,amount代表背包的最大重量

    2024年01月23日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包