Hudi0.14.0集成Spark3.2.3(Spark Shell方式)

这篇具有很好参考价值的文章主要介绍了Hudi0.14.0集成Spark3.2.3(Spark Shell方式)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 启动

1.1 启动Spark Shell

# For Spark versions: 3.2 - 3.4
spark-shell --jars /path/to/jars/hudi-spark3.2-bundle_2.12-0.14.0.jar \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension' \

文章来源地址https://www.toymoban.com/news/detail-820510.html

到了这里,关于Hudi0.14.0集成Spark3.2.3(Spark Shell方式)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于数据湖的流批一体:flink1.15.3与Hudi0.12.1集成,并配置基于CDH6.3.2的hive catalog

    前言:为实现基于数据湖的流批一体,采用业内主流技术栈hudi、flink、CDH(hive、spark)。flink使用sql client与hive的catalog打通,可以与hive共享元数据,使用sql client可操作hive中的表,实现批流一体;flink与hudi集成可以实现数据实时入湖;hudi与hive集成可以实现湖仓一体,用flink实

    2024年02月12日
    浏览(57)
  • spark集成hudi

    启动spark-shell 2 hudi内置数据生成器,生成10条json数据 3加载到DF,写入hudi,实现简单etl处理 4读取存储数据及注册临时表

    2024年02月07日
    浏览(34)
  • 04_Hudi 集成 Spark、保存数据至Hudi、集成Hive查询、MergeInto 语句

    本文来自\\\"黑马程序员\\\"hudi课程 4.第四章 Hudi 集成 Spark 4.1 环境准备 4.1.1 安装MySQL 5.7.31 4.1.2 安装Hive 2.1 4.1.3 安装Zookeeper 3.4.6 4.1.4 安装Kafka 2.4.1 4.2 滴滴运营分析 4.2.1 需求说明 4.2.2 环境准备 4.2.2.1 工具类SparkUtils 4.2.2.2 日期转换星期 4.2.3 数据ETL保存 4.2.3.1 开发步骤 4.2.3.2 加载CS

    2024年02月13日
    浏览(47)
  • 数据湖架构Hudi(二)Hudi版本0.12源码编译、Hudi集成spark、使用IDEA与spark对hudi表增删改查

    Hadoop 3.1.3 Hive 3.1.2 Flink 1.13.6,scala-2.12 Spark 3.2.2,scala-2.12 2.1.1 环境准备 2.1.2 下载源码包 2.1.3 在pom文件中新增repository加速依赖下载 在pom文件中修改依赖的组件版本: 2.1.4 修改源码兼容hadoop3并添加kafka依赖 Hudi默认依赖的hadoop2,要兼容hadoop3,除了修改版本,还需要修改如下代

    2024年02月06日
    浏览(56)
  • Hudi(16):Hudi集成Flink之读取方式

    目录 0. 相关文章链接 1. 流读(Streaming Query) 2. 增量读取(Incremental Query) 3. 限流  Hudi文章汇总          当前表默认是快照读取,即读取最新的全量快照数据并一次性返回。通过参数read.streaming.enabled 参数开启流读模式,通过 read.start-commit 参数指定起始消费位置,支

    2024年02月06日
    浏览(67)
  • Hudi(17):Hudi集成Flink之写入方式

    目录 0. 相关文章链接 1. CDC 数据同步 1.1. 准备MySQL表 1.2. flink读取mysql binlog并写入kafka 1.3. flink读取kafka数据并写入hudi数据湖 1.4. 使用datafaker插入数据 1.5. 统计数据入Hudi情况 1.6. 实时查看数据入湖情况 2. 离线批量导入 2.1. 原理 2.2. WITH 参数 2.3. 案例 3. 全量接增量 3.1. 

    2024年02月05日
    浏览(40)
  • 【数据湖Hudi-10-Hudi集成Flink-读取方式&限流&写入方式&写入模式&Bucket索引】

    当前表默认是快照读取,即读取最新的全量快照数据并一次性返回。通过参数 read.streaming.enabled 参数开启流读模式,通过 read.start-commit 参数指定起始消费位置,支持指定 earliest 从最早消费。 1.with参数 名称 Required 默认值 说明 read.streaming.enabled false false 设置 true 开启流读模式

    2024年02月14日
    浏览(45)
  • Hudi Spark-SQL增量查询数据几种方式

    由于项目上主要用Hive查询Hudi,所以之前总结过一篇:Hive增量查询Hudi表。最近可能会有Spark SQL增量查询Hudi表的需求,并且我发现目前用纯Spark SQL的形式还不能直接增量查询Hudi表,于是进行学习总结一下。 先看一下官方文档上Spark SQL增量查询的方式,地址:https://hudi.apache.or

    2024年02月11日
    浏览(41)
  • Spark3 新特性之AQE

    一、 背景 Spark 2.x 在遇到有数据倾斜的任务时,需要人为地去优化任务,比较费时费力;如果任务在Reduce阶段,Reduce Task 数据分布参差不齐,会造成各个excutor节点资源利用率不均衡,影响任务的执行效率;Spark 3新特性AQE极大地优化了以上任务的执行效率。 二、 Spark 为什么需

    2024年02月14日
    浏览(35)
  • spark3.3.0安装&部署过程

    为了防止不必要的报错,部署之前请务必从开头开始看,切勿跳过其中一个部署模式,因为每一个部署模式都是从上一个模式的配置上进行的 下载地址:https://archive.apache.org/dist/spark/ 本文所下载版本为: spark-3.3.0-bin-hadoop2 环境: hadoop-2.7.5 jdk1.8.0 Scala 所谓的Local模式,就是不需

    2023年04月20日
    浏览(80)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包