Prometheus 架构全面解析

这篇具有很好参考价值的文章主要介绍了Prometheus 架构全面解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在本指南中,我们将详细介绍 Prometheus 架构。

Prometheus 是一个用 Golang 编写的开源监控和告警系统,能够收集和处理来自各种目标的指标。您还可以查询、查看、分析指标,并根据阈值收到警报。

此外,在当今世界,可观测性对每个组织来说都变得至关重要,而 Prometheus 是开源领域的关键可观测性工具之一。

在这篇博客中,我们将了解 Prometheus 的所有关键组件,以及它们如何协同工作以使整个监控系统正常工作。

Prometheus 架构

以下是 Prometheus 架构的高级概述。

Prometheus 架构全面解析,云原生,prometheus,架构

Prometheus 主要由以下部分组成。

  1. Prometheus 服务器
  2. 服务发现
  3. 时序数据库(TSDB)
  4. 目标
  5. 导出器
  6. 推送网关
  7. 警报管理器
  8. 客户端库
  9. PromQL系列

让我们详细看一下每个组件。

Prometheus 服务器

Prometheus 服务器是基于指标的监控系统的大脑。服务器的主要工作是使用拉取模型从各种目标收集指标。

Target 只不过是服务器、pod、端点等,我们将在下一主题中详细介绍。

使用 Prometheus 从目标收集指标的一般术语称为抓取(pull)。

Prometheus 架构全面解析,云原生,prometheus,架构

Prometheus 会根据 Prometheus 配置文件中提到的抓取间隔定期抓取指标。

下面是一个示例配置。

global:
  scrape_interval: 15s 
  evaluation_interval: 15s 
  scrape_timeout: 10s 

rule_files:
  - "rules/*.rules"

scrape_configs:
  - job_name: 'prometheus'
    static_configs:
      - targets: ['localhost:9090'] 
  - job_name: 'node-exporter'
    static_configs:
      - targets: ['node-exporter:9100'] 

alerting:
  alertmanagers:
    - static_configs:
        - targets: ['alertmanager:9093']

时序数据库(TSDB)

prometheus 接收的指标数据会随时间变化(CPU、内存、网络 IO 等)。它称为时间序列数据。因此,Prometheus 使用时间序列数据库 (TSDB) 来存储其所有数据。

默认情况下,Prometheus 将其所有数据以有效的格式(块)存储在本地磁盘中。随着时间的流逝,它会压缩所有旧数据以节省空间。它还具有保留策略来删除旧数据。

Prometheus 还提供远程存储选项。这主要是存储可扩展性、长期存储、备份和灾难恢复等所必需的。

Prometheus 目标

Target 是 Prometheus 抓取指标的来源。目标可以是服务器、服务、Kubernetes Pod、应用程序端点等。

Prometheus 架构全面解析,云原生,prometheus,架构

默认情况下,prometheus 在目标路径下查找指标。可以在目标配置中更改默认路径。这意味着,如果您未指定自定义指标路径,Prometheus 会在 /metrics 下查找指标。/metrics

目标配置位于配置文件的scrape_configs下。下面是一个示例配置。Prometheus

scrape_configs:
  
  - job_name: 'node-exporter'
    static_configs:
      - targets: ['node-exporter1:9100', 'node-exporter2:9100']
 
  - job_name: 'my_custom_job'
    static_configs:
      - targets: ['my_service_address:port']
    metrics_path: '/custom_metrics'

  - job_name: 'blackbox-exporter'
    static_configs:
      - targets: ['blackbox-exporter1:9115', 'blackbox-exporter2:9115']
    metrics_path: /probe

  - job_name: 'snmp-exporter'
    static_configs:
      - targets: ['snmp-exporter1:9116', 'snmp-exporter2:9116']
    metrics_path: /snmp

从目标端点,prometheus 需要特定文本格式的数据。每个指标都必须位于新行上。

通常,这些指标使用在目标上运行的 prometheus 导出器在目标节点上公开。

Prometheus 导出器

导出器就像在目标上运行的代理。它将指标从特定系统转换为 prometheus 理解的格式。

它可以是 CPU、内存等系统指标,也可以是 Java JMX 指标、MySQL 指标等。

Prometheus 架构全面解析,云原生,prometheus,架构

默认情况下,这些转换后的指标由导出器在目标的 /metrics 路径(HTTPS 端点)上公开。

例如,如果要监视服务器的 CPU 和内存,则需要在该服务器上安装节点导出器,并且节点导出器会在 /metrics 上以 prometheus 指标格式公开 CPU 和内存指标。

一旦 Prometheus 提取了指标,它将组合指标名称、标签、值和时间戳,为该数据提供结构

有很多社区导出器可用,但只有其中一些得到了 Prometheus 的正式批准。如果需要更多自定义项,则需要创建自己的导出器。

Prometheus 将导出器分为各个部分,例如数据库、硬件、问题跟踪和持续集成、消息传递系统、存储、公开 Prometheus 指标的软件、其他第三方实用程序等。

您可以从官方文档中查看每个类别的出口商列表。

在 Prometheus 配置文件中,所有导出器的详细信息都将在 .scrape_configs

scrape_configs:
  - job_name: 'node-exporter'
    static_configs:
      - targets: ['node-exporter1:9100', 'node-exporter2:9100']

  - job_name: 'blackbox-exporter'
    static_configs:
      - targets: ['blackbox-exporter1:9115', 'blackbox-exporter2:9115']
    metrics_path: /probe

  - job_name: 'snmp-exporter'
    static_configs:
      - targets: ['snmp-exporter1:9116', 'snmp-exporter2:9116']
    metrics_path: /snmp

Prometheus 服务发现

Prometheus 使用两种方法从目标中抓取指标。

  1. 静态配置:当目标具有静态 IP 或 DNS 端点时,我们可以将这些端点用作目标。
  2. 服务发现:在大多数自动缩放系统和分布式系统(如 Kubernetes)中,目标不会有静态终结点。在这种情况下,将使用 prometheus 服务发现来发现目标端点,并将目标自动添加到 prometheus 配置中。

Prometheus 架构全面解析,云原生,prometheus,架构

在继续之前,让我展示一个使用 Prometheus 配置文件的 Kubernetes 服务发现块的小示例。kubernetes_sd_configs

scrape_configs:
      - job_name: 'kubernetes-apiservers'
        kubernetes_sd_configs:
        - role: endpoints
        scheme: https
        tls_config:
          ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
        relabel_configs:
        - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
          action: keep
          regex: default;kubernetes;https

Kubernetes 是动态目标的完美示例。在这里,您不能使用静态目标方法,因为 Kubernetes 集群中的目标(Pod)本质上是短暂的,并且很可能是短暂的。

Kubernetes 中还有基于文件的服务发现。它适用于静态目标,但经典静态配置与静态配置之间的主要区别在于,在这种情况下,我们创建单独的 JSON 或 YAML 文件并将目标信息保存在其中file_sd_configs。Prometheus 将读取文件以识别目标。static_configs file_sd_configs

不仅这两个,还有各种服务发现方法可用,例如 consul_sd_configs(prometheus 从 consul 获取目标详细信息)、ec2_sd_configs等。

要了解有关配置详细信息的更多信息,请访问官方文档。

Prometheus 推送网关

默认情况下,Prometheus 使用拉取机制来获取指标。

但是,在某些情况下,需要将指标推送到 prometheus。

让我们举一个在 Kubernetes cronjob 上运行的批处理作业的例子,该作业每天根据某些事件运行 5 分钟。在这种情况下,Prometheus 将无法使用拉取机制正确抓取服务级别指标

因此,为了等待 prometheus 拉取指标,我们需要将指标推送到 prometheus。为了推送指标,prometheus 提供了一个名为 Pushgateway 的解决方案。 它是一种中间网关。

Pushgateway 需要作为独立组件运行。批处理作业可以将指标推送到 pushgateway 端点,Pushgateway 会公开这些指标。然后 prometheus 从 Pushgateway 中抓取这些指标。

Prometheus 架构全面解析,云原生,prometheus,架构

Pushgateway 将指标数据临时存储在内存存储中。它更像是一个临时缓存。

Pushgateway 配置也将在配置中的部分下进行配置。scrape_configs Prometheus

scrape_configs:
  - job_name: "pushgateway"
        honor_labels: true
        static_configs:
        - targets: [pushgateway.monitoring.svc:9091]

要将指标发送到 Pushgateway,您需要使用 prometheus 客户端库检测应用程序或脚本以公开所需的指标。

Prometheus 客户端库

Prometheus 客户端库是软件库,可用于检测应用程序代码,以 Prometheus 理解的方式公开指标。

如果需要自定义检测或想要创建自己的导出器,可以使用客户端库。

一个非常好的用例是需要将指标推送到 Pushgateway 的批处理作业。批处理作业需要使用客户端库进行检测,以 prometheus 格式公开需求指标。

以下示例公开了名为 batch_job_records_processed_total 的自定义指标。Python Client Library

from prometheus_client import start_http_server, Counter
import time
import random

RECORDS_PROCESSED = Counter('batch_job_records_processed_total', 'Total number of records processed by the batch job')

def process_record():
    time.sleep(random.uniform(0.01, 0.1))
    RECORDS_PROCESSED.inc()

def batch_job():
   
    for _ in range(100):
        process_record()

if __name__ == '__main__':
 
    start_http_server(8000)
    print("Metrics server started on port 8000")

    batch_job()
    print("Batch job completed")

    while True:
        time.sleep(1)

此外,在使用客户端库时,HTTP 服务器prometheus_client端点中公开指标。/metrics

Prometheus 几乎为每种编程语言提供了客户端库,如果您想创建客户端库,也可以这样做。

要了解有关创建指南的更多信息并查看客户端库列表,您可以参考官方文档。

Prometheus 警报管理器

Alertmanager是Prometheus监控系统的关键部分。它的主要工作是根据 Prometheus 警报配置中设置的指标阈值发送警报。

警报由 Prometheus 触发并发送到 Alertmanager。它反过来将警报发送到警报管理器配置中配置的相应通知系统/接收器(电子邮件、松弛等)。

此外,警报管理器还负责以下工作。

  1. 警报重复数据删除:静默重复警报的过程。
  2. 分组:将相关警报分组到其他位置的过程。
  3. 音:静音警报,用于维护或误报。
  4. 路由:根据严重性将警报路由到适当的接收器。
  5. 禁止:当存在中等高严重性警报时停止低严重性警报的过程。

Prometheus 架构全面解析,云原生,prometheus,架构


下面是警报规则的示例配置。

groups:
- name: microservices_alerts
  rules:
  - record: http_latency:average_latency_seconds
    expr: sum(http_request_duration_seconds_sum) / sum(http_request_duration_seconds_count)
  - alert: HighLatencyAlert
    expr: http_latency:average_latency_seconds > 0.5
    for: 5m
    labels:
      severity: critical
    annotations:
      summary: "High latency detected in microservices"
      description: "The average HTTP latency is high ({{ $value }} seconds) in the microservices cluster."

这是 Alertmanager 配置文件的路由配置示例

routes:
- match:
    severity: 'critical'
  receiver: 'pagerduty-notifications'

- match:
    severity: 'warning'
  receiver: 'slack-notifications'

警报管理器支持大多数消息和通知系统,例如 Discord、电子邮件、Slack 等,以将警报作为通知发送给接收者。

PromQL系列

PromQL 是一种灵活的查询语言,可用于从 Prometheus 查询时间序列指标。

我们可以直接从用户界面使用查询,也可以使用命令通过命令行界面进行查询。Prometheuscurl

Prometheus 用户界面

Prometheus 架构全面解析,云原生,prometheus,架构

通过 CLI 查询

curl "http://54.186.154.78:30000/api/v1/query?query=$(echo 'up' | jq -s -R -r @uri)" | jq .

此外,当您将 prometheus 作为数据源添加到 Grafana 时,您可以使用 PromQL 查询和创建 Grafana 仪表板,如下所示。

Prometheus 架构全面解析,云原生,prometheus,架构

结论

本文解释了 Prometheus 架构的主要组件,并将提供 Prometheus 配置的基本概述,您可以使用该配置执行更多操作。

每个组织的要求都不同,Prometheus 在不同环境中的实现也各不相同,例如 VM 和 Kubernetes。如果您了解基础知识和关键配置,则可以在任何平台上轻松实现它。文章来源地址https://www.toymoban.com/news/detail-820529.html

到了这里,关于Prometheus 架构全面解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 云原生之深入解析Prometheus Pushgetway的原理分析和实战操作

    Pushgateway 是 Prometheus 的一个组件,Prometheus server 默认是通过 Exporter 主动获取数据(默认采取 pull 拉取数据),Pushgateway 则是通过 exporter 主动方式推送数据到 Pushgateway,再由 Prometheus 主动去拉取 Pushgateway 数据,用户可以写一些自定义的监控脚本把需要监控的数据发送给 Pushg

    2024年02月13日
    浏览(49)
  • 云原生之深入解析如何在K8S环境中使用Prometheus来监控CoreDNS指标

    CoreDNS 是 Kubernetes 环境的DNS add-on 组件,它是在控制平面节点中运行的组件之一,使其正常运行和响应是 Kubernetes 集群正常运行的关键。 DNS 是每个体系结构中最敏感和最重要的服务之一。应用程序、微服务、服务、主机……如今,万物互联,并不一定意味着只用于内部服务,

    2024年02月03日
    浏览(51)
  • 【云原生 Prometheus篇】Prometheus的动态服务发现机制与认证配置

    基于文件的服务发现是仅仅略优于静态配置的服务发现方式,它不依赖于任何平台或第三方服务,因而也是最为简单和通用的实现方式。 Prometheus Server 会定期从文件中加载 Target 信息,文件可使用 YAML 和 JSON 格式,它含有定义的 Target 列表,以及可选的标签信息。 下载地址:

    2024年01月21日
    浏览(33)
  • 云原生监控系统Prometheus:基于Prometheus构建智能化监控告警系统

    目录 一、理论 1.Promethues简介 2.监控告警系统设计思路 3.Prometheus监控体系 4.Prometheus时间序列数据 5.Prometheus的生态组件 6.Prometheus工作原理 7.Prometheus监控内容 8.部署Prometheus 9.部署Exporters 10.部署Grafana进行展示 二、实验 1.部署Prometheus 2.部署Exporters 2.监控远程MySQL 3.部署Grafana进行

    2024年02月07日
    浏览(49)
  • Prometheus-05 Prometheus的核心概念和架构

    Prometheus是一个开源的监控系统和时间序列数据库,被广泛应用于云原生环境中的监控和告警。本文将介绍Prometheus的核心概念和架构,帮助读者了解Prometheus的工作原理和基本组件。 Prometheus基于一些核心概念来实现高效的监控和度量数据收集: 监控目标(Targets) 监控目标是

    2024年02月11日
    浏览(40)
  • 【云原生】Prometheus 之PromQL

    当 Prometheus 通过 Exporter 采集到相应的监控指标样本数据后,我们就可以通过PromQL 对监控样本数据进行查询,从而对相应的数据样本进行分析以及制定报警规则。 PromQL(Prometheus Query Language)是 Prometheus 内置的数据查询语言。支持用户进行实时的数据查询及聚合操作。 Prometh

    2024年02月16日
    浏览(34)
  • 云原生系列之使用prometheus监控nginx

    大家好,又见面了,我是沐风晓月,本文主要讲解云原生系列之使用prometheus监控nginx 文章收录到 csdn 我是沐风晓月的博客 【prometheus监控系列】专栏 ,此专栏是 沐风晓月 对云原生prometheus的的总结,希望能够加深自己的印象,以及帮助到其他的小伙伴😉😉。 如果文章有什么

    2024年02月02日
    浏览(49)
  • 云原生监控平台 Prometheus 从部署到监控

    角色 节点 IP地址 监控端 Prometheus ,Grafana,node_exporter ,Nginx 47.120.35.251 被监控端1 node_exporter 47.113.177.189 被监控端2 mysqld_exporter,node_exporter,Nginx,Nginx Exporter 47.113.146.118 2.1.1 二进制安装脚本安装Nginx 2.1.2 修改Nginx.conf 2.2.1 下载相关软件包 1.2.2 将Prometheus添加至System管理  1.2

    2024年02月11日
    浏览(45)
  • 【云原生】Prometheus之部署 Alertmanager 发送告警

    Prometheus 对指标的收集、存储与告警能力分属于 Prometheus Server 和 AlertManager 两个独立的组件,前者仅负责定义告警规则生成告警通知, 具体的告警操作则由后者完成。 Alertmanager 负责处理由 Prometheus Server 发来的告警通知,Alertmanager对告警通知进行分组、去重后,根据路由规则

    2024年02月16日
    浏览(46)
  • [云原生] Prometheus之部署 Alertmanager 发送告警

    Prometheus 对指标的收集、存储与告警能力分属于 Prometheus Server 和 AlertManager 两个独立的组件,前者仅负责定义告警规则生成告警通知, 具体的告警操作则由后者完成。 Alertmanager 负责处理由 Prometheus Server 发来的告警通知,Alertmanager对告警通知进行分组、去重后,根据路由规则

    2024年04月10日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包