深度学习-三维卷积神经网络(3DCNN)

这篇具有很好参考价值的文章主要介绍了深度学习-三维卷积神经网络(3DCNN)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 3DCNN理解
2D卷积仅仅考虑2D图片的空间信息,所以只适用于单张2D图片的视觉理解任务。在处理3D图像或视频时,网络的输入多了一个维度,输入由 ( c , h e i g h t , w i d t h ) (c,height,width) (c,height,width)变为了 ( c , d e p t h , h e i g h t , w i d t h ) (c,depth,height,width) (c,depth,height,width),其中 c c c是通道数, d e p t h depth depth为输入数据的宽度。因此,对该数据进行处理时,就需要卷积也做出相应的变换,由2D卷积变为3D卷积。
在2D卷积的基础上,3D卷积被提出。3D卷积在结构上较2D卷积多了一个维度,2D卷积的尺寸可以表示为 k h × k w k_h \times k_w kh×kw,而3D卷积的尺寸可以表示为 k h × k w × k d k_h \times k_w \times k_d kh×kw×kd。3D卷积的具体计算公式与2D卷积类似,即每次滑动时与 c c c个通道、尺寸大小为 ( d e p t h , h e i g h t , w i d t h ) (depth, height, width) (depth,height,width)的图像做乘加运算,从而得到输出特征图中的一个值,如图所示。
三维神经网络,深度学习,深度学习,cnn
三维神经网络,深度学习,深度学习,cnn

视频输入的维度: i n p u t C × i n p u t T × i n p u t W × i n p u t H input_C \times input_T \times input_W \times input_H inputC×inputT×inputW×inputH
3D卷积核的维度: i n p u t C input_C inputC 个并列的维度为 k e r n e l T × k e r n e l W × k e r n e l H kernel_T \times kernel_W \times kernel_H kernelT×kernelW×kernelH 的卷积核;
3D卷积核在 T , W , H T, W, H T,W,H三个方向上移动。

参考:
3D CNN文章来源地址https://www.toymoban.com/news/detail-821066.html

到了这里,关于深度学习-三维卷积神经网络(3DCNN)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习算法及卷积神经网络

    传统神经网络 深度学习不适用情况:跨域(股票预测问题),旧历史数据的规律不适合新数据的规律 矩阵计算: 输入数据x[32×32×3]=3072个像素点,展开成一列, 目的:做一个10分类,10组权重参数,得到10个值,属于各个类别的概率 偏置项b,10个值 权重参数W得到:先随机,

    2023年04月08日
    浏览(53)
  • 深度学习——CNN卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习中常用于处理具有网格结构数据的神经网络模型。它在计算机视觉领域广泛应用于图像分类、目标检测、图像生成等任务。 CNN 的核心思想是通过利用局部感知和参数共享来捕捉输入数据的空间结构信息。相比于传统

    2024年02月15日
    浏览(48)
  • 深度学习-卷积神经网络-AlexNET

    本章内容来自B站: AlexNet深度学习图像分类算法 5.池化层 6.全连接层 7.网络架构 8.Relu激活函数 sigmoid和tanh会产生梯度消失或者爆炸的问题 手写数字识别 双GPU上 5.过拟合-dropout 6.性能 1.三位大师 2.论文详细内容

    2024年02月07日
    浏览(47)
  • 深度学习|CNN卷积神经网络

    在CNN没有出现前,图像对人工智能来说非常难处理。 主要原因: 图像要处理的数据量太大了。图像由像素组成,每个像素又由不同颜色组成,一张1000×1000彩色RGB图像需要的参数是1000×1000×3,需要三百万参数左右,普通神经网络会全用全连接方法来学习整幅图像上的特征,处

    2024年02月11日
    浏览(52)
  • 深度学习基础——卷积神经网络(一)

    卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了Mind

    2024年02月20日
    浏览(40)
  • 深度学习实验3 - 卷积神经网络

    手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 不同

    2024年02月14日
    浏览(49)
  • 基于 Python中的深度学习:神经网络与卷积神经网络

    当下,深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言,Python提供了丰富的工具和库,为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习,重点聚焦于神经网络与卷积神经网络的原理和应用。 深度学习是机器学

    2024年02月07日
    浏览(59)
  • 机器学习&&深度学习——卷积神经网络(LeNet)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——池化层 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 之前的内容中曾经将softmax回归模型和多层感知机应用于Fashion-MNIST数据集中的服装图片。为了能应用他们,我

    2024年02月14日
    浏览(43)
  • 竞赛 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月08日
    浏览(47)
  • 卷积神经网络——上篇【深度学习】【PyTorch】

    5.1.1、理论部分 全连接层后,卷积层出现的意义? 一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。 (convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包