爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测

这篇具有很好参考价值的文章主要介绍了爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

背影
极限学习机
爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测

主要参数
MATLAB代码
效果图
结果分析
展望
完整代码下载链接:爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测(代码完整,数据)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88762258

背影

极限学习机是在BP神经网络上改进的一种网络,拥有无限拟合能力,但是容易过拟合,本文通过基于爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测

摘要

极限学习机原理,,爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测

极限学习机

极限学习机(Extreme Learning Machine, ELM)或“超限学习机”是一类基于前馈神经网络(Feedforward Neuron Network, FNN)构建的机器学习系统或方法,适用于监督学习和非监督学习问题
[1]
。ELM在研究中被视为一类特殊的FNN,或对FNN及其反向传播算法的改进,其特点是隐含层节点的权重为随机或人为给定的,且不需要更新,学习过程仅计算输出权重
[2]
。传统的ELM具有单隐含层,在与其它浅层学习系统,例如单层感知机(single layer perceptron)和支持向量机(文章来源地址https://www.toymoban.com/news/detail-821446.html

到了这里,关于爬山算法优化遗传算法优化极限学习机的多分类预测,p-ga-elm多分类预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包