【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步

这篇具有很好参考价值的文章主要介绍了【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述 

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门 

 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具Datax实现数据同步 

1、准备工作:

  • JDK(1.8 以上,推荐 1.8)
  • Python(23 版本都可以)
  • Apache Maven 3.x(Compile DataX)(手动打包使用,使用 tar 包方式不需要安装)
主机名 操作系统 IP 地址 软件包
MySQL-1 CentOS 7.4 192.168.1.1 jdk-8u181-linux-x64.tar.gz datax.tar.gz
MySQL-2 CentOS 7.4 192.168.1.2

2、安装 JDK:

下载地址:Java Archive Downloads - Java SE 8(需要创建 Oracle 账号)

[root@MySQL-1 ~]# ls
anaconda-ks.cfg  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# tar zxf jdk-8u181-linux-x64.tar.gz 
[root@DataX ~]# ls
anaconda-ks.cfg  jdk1.8.0_181  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# mv jdk1.8.0_181 /usr/local/java
[root@MySQL-1 ~]# cat <<END >> /etc/profile
export JAVA_HOME=/usr/local/java
export PATH=$PATH:"$JAVA_HOME/bin"
END
[root@MySQL-1 ~]# source /etc/profile
[root@MySQL-1 ~]# java -version
  • 因为 CentOS 7 上自带 Python 2.7 的软件包,所以不需要进行安装。

3、Linux 上安装 DataX 软件 

[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
[root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/
[root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin/*/._*  
  • 当未删除时,可能会输出:[/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件.

验证

[root@MySQL-1 ~]# cd /usr/local/datax/bin
[root@MySQL-1 ~]# python datax.py ../job/job.json

输出

2021-12-13 19:26:28.828 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-13 19:26:28.829 [job-0] INFO  StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.060s |  All Task WaitReaderTime 0.068s | Percentage 100.00%
2021-12-13 19:26:28.829 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-13 19:26:18
任务结束时刻                    : 2021-12-13 19:26:28
任务总计耗时                    :                 10s
任务平均流量                    :          253.91KB/s
记录写入速度                    :          10000rec/s
读出记录总数                    :              100000
读写失败总数                    :                   0

4、DataX 基本使用

查看 streamreader \--> streamwriter 的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter

输出

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.


Please refer to the streamreader document:
     https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 

Please refer to the streamwriter document:
     https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
 
Please save the following configuration as a json file and  use
     python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [], 
                        "sliceRecordCount": ""
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "", 
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""
            }
        }
    }
}

根据模板编写 json 文件

[root@MySQL-1 ~]# cat <<END > test.json
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [        # 同步的列名 (* 表示所有)
       {
           "type":"string",
            "value":"Hello."
       },
       {
           "type":"string",
            "value":"河北彭于晏"
       },
   ], 
                        "sliceRecordCount": "3"     # 打印数量
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "utf-8",     # 编码
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "2"         # 并发 (即 sliceRecordCount * channel = 结果)
            }
        }
    }
}

输出:(要是复制我上面的话,需要把 # 带的内容去掉)

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,大数据,Datax,大数据,学习,笔记

5、安装 MySQL 数据库

分别在两台主机上安装:

[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel   
[root@MySQL-1 ~]# systemctl start mariadb												# 安装 MariaDB 数据库
[root@MySQL-1 ~]# mysql_secure_installation												# 初始化	
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDBSERVERS IN PRODUCTION USE!  PLEASE READ EACH STEP CAREFULLY!Enter current password for root (enter for none):	     	# 直接回车
OK, successfully used password, moving on...
Set root password? [Y/n] y                       	 	 	# 配置 root 密码
New password: 
Re-enter new password: 
Password updated successfully!
Reloading privilege tables..... Success!
Remove anonymous users? [Y/n] y                			 	# 移除匿名用户... skipping.
Disallow root login remotely? [Y/n] n            		 	# 允许 root 远程登录... skipping.
Remove test database and access to it? [Y/n] y 		     	# 移除测试数据库... skipping.
Reload privilege tables now? [Y/n] y             	     	# 重新加载表... Success!

1)准备同步数据(要同步的两台主机都要有这个表)

MariaDB [(none)]> create database `course-study`;
Query OK, 1 row affected (0.00 sec)MariaDB [(none)]> create table `course-study`.t_member(ID int,Name varchar(20),Email varchar(30));
Query OK, 0 rows affected (0.00 sec)

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,大数据,Datax,大数据,学习,笔记
因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:

grant all privileges on *.* to root@'%' identified by '123123';
flush privileges;

2)创建存储过程:

DELIMITER $$
CREATE PROCEDURE test()
BEGIN
declare A int default 1;
while (A < 3000000)do
insert into `course-study`.t_member values(A,concat("LiSa",A),concat("LiSa",A,"@163.com"));
set A = A + 1;
END while;
END $$
DELIMITER ;

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,大数据,Datax,大数据,学习,笔记
3)调用存储过程(在数据源配置,验证同步使用):

call test();

6、通过 DataX 实 MySQL 数据同步

1)生成 MySQL 到 MySQL 同步的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter
{"job": {"content": [{"reader": {"name": "mysqlreader",							# 读取端"parameter": {"column": [], 								# 需要同步的列 (* 表示所有的列)"connection": [{"jdbcUrl": [], 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接用户"username": "", 							# 连接密码"where": ""									# 描述筛选条件}}, "writer": {"name": "mysqlwriter",							# 写入端"parameter": {"column": [], 								# 需要同步的列"connection": [{"jdbcUrl": "", 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接密码"preSql": [], 								# 同步前. 要做的事"session": [], "username": "",								# 连接用户 "writeMode": ""								# 操作类型}}}], "setting": {"speed": {"channel": ""										# 指定并发数}}}
}

2)编写 json 文件:

[root@MySQL-1 ~]# vim install.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}

3)验证

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py install.json

输出:

2021-12-15 16:45:15.120 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-15 16:45:15.120 [job-0] INFO  StandAloneJobContainerCommunicator - Total 2999999 records, 107666651 bytes | Speed 2.57MB/s, 74999 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 82.173s |  All Task WaitReaderTime 75.722s | Percentage 100.00%
2021-12-15 16:45:15.124 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-15 16:44:32
任务结束时刻                    : 2021-12-15 16:45:15
任务总计耗时                    :                 42s
任务平均流量                    :            2.57MB/s
记录写入速度                    :          74999rec/s
读出记录总数                    :             2999999
读写失败总数                    :                   0

你们可以在目的数据库进行查看,是否同步完成。
【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,大数据,Datax,大数据,学习,笔记

  • 上面的方式相当于是完全同步,但是当数据量较大时,同步的时候被中断,是件很痛苦的事情;
  • 所以在有些情况下,增量同步还是蛮重要的。

7、使用 DataX 进行增量同步

使用 DataX 进行全量同步和增量同步的唯一区别就是:增量同步需要使用 where 进行条件筛选。(即,同步筛选后的 SQL)


1)编写 json 文件:

[root@MySQL-1 ~]# vim where.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","where": "ID <= 1888","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}
  • 需要注意的部分就是:where(条件筛选) 和 preSql(同步前,要做的事) 参数。

2)验证:

[root@MySQL-1 ~]# python /usr/local/data/bin/data.py where.json

输出:

2021-12-16 17:34:38.534 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-16 17:34:38.534 [job-0] INFO  StandAloneJobContainerCommunicator - Total 1888 records, 49543 bytes | Speed 1.61KB/s, 62 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.002s |  All Task WaitReaderTime 100.570s | Percentage 100.00%
2021-12-16 17:34:38.537 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-16 17:34:06
任务结束时刻                    : 2021-12-16 17:34:38
任务总计耗时                    :                 32s
任务平均流量                    :            1.61KB/s
记录写入速度                    :             62rec/s
读出记录总数                    :                1888
读写失败总数                    :                   0

目标数据库上查看:
【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,大数据,Datax,大数据,学习,笔记
3)基于上面数据,再次进行增量同步:

主要是 where 配置:"where": "ID > 1888 AND ID <= 2888"						# 通过条件筛选来进行增量同步
同时需要将我上面的 preSql 删除(因为我上面做的操作时 truncate 表)

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,大数据,Datax,大数据,学习,笔记文章来源地址https://www.toymoban.com/news/detail-821591.html

到了这里,关于【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 阿里巴巴开源DataX全量同步多个MySQL数据库

    上次 写了阿里巴巴高效的离线数据同步工具DataX: https://mp.weixin.qq.com/s/_ZXqA3H__Kwk-9O-9dKyOQ 安装DataX这个开源工具,并且同步备份了几张数据表。但是发现一个问题,就是每张表都需要单独写一个 job。如果数据表有几百张是不是要写几百个,这个不太现实了。 正当一筹莫展之际

    2024年02月02日
    浏览(70)
  • 阿里云开源离线同步工具DataX3.0,用于数据仓库、数据集市、数据备份

    DataX是阿里云开源的一款离线数据同步工具,支持多种数据源和目的地的数据同步,包括但不限于MySQL、Oracle、HDFS、Hive、ODPS等。它可以通过配置文件来定义数据源和目的地的连接信息、数据同步方式、数据过滤等,从而实现数据的高效、稳定、可扩展的同步。 例如,如果您

    2024年02月10日
    浏览(55)
  • datax使用笔记

    项目要数据迁移,毫无疑问,果断datax。 方式多种多样,爱用哪种用哪种。 网上下载 自己从网上找也可以,这个链接实测也可用。 http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz 网盘下载 网上能找到,但是麻烦,干脆分享个。 链接: https://pan.baidu.com/s/1QpCEvAgD4DCBtDz-rRzP

    2024年02月05日
    浏览(33)
  • 【第三阶段】kotlin中使用带let的安全调用

    let常常和?.配合使用,如果前面的对象为null,let不执行,能够执行到let里面 对象一定不为null 1.不为null 执行结果 2.为“ ” 执行结果 3.为null 执行结果

    2024年02月12日
    浏览(42)
  • Centos7.9通过datax-web2.0_用Datax3.0进行增量同步_增量删除_数据更新---大数据之DataX工作笔记006

     1.注意这里的增量同步,不像之前用的DBsyncer或者是,NIFI中的利用binlog的形式,实现真正的实时的数据同步.  2.这里的增量是,指定通过ID,或者时间来进行增量,比如大于2023-07-03 11:44:56的数据仅仅同步这个,或者是,id大于多少的这样,这里建议用时间,因为如果有id用的字符串咋弄来

    2024年02月10日
    浏览(40)
  • 【计算机网络】学习笔记:第三章 数据链路层【王道考研】持续更新中....

    基于本人观看学习b站王道计算机网络课程所做的笔记,不做任何获利 仅进行交流分享 特此鸣谢王道考研 若有侵权请联系,立删 如果本篇笔记帮助到了你,还请点赞 关注 支持一下 ♡𖥦)!! 主页专栏有更多,如有疑问欢迎大家指正讨论,共同进步! 给大家跳段街舞感谢支持

    2024年02月01日
    浏览(61)
  • 【计算机网络】学习笔记:第三章 数据链路层(八千字详细配图)【王道考研】

    基于本人观看学习b站王道计算机网络课程所做的笔记,不做任何获利 仅进行交流分享 特此鸣谢王道考研 若有侵权请联系,立删 如果本篇笔记帮助到了你,还请点赞 关注 支持一下 ♡𖥦)!! 主页专栏有更多,如有疑问欢迎大家指正讨论,共同进步! 给大家跳段街舞感谢支持

    2024年02月06日
    浏览(63)
  • C#学习笔记--数据结构、泛型、委托事件等进阶知识点

    ArrayList 元素类型以Object类型存储,支持增删查改的数组容器。 因而存在装箱拆箱操作,谨慎使用。 ArrayList和数组区别? ArrayList使用不用说明固定长度,数组则需要 数组存储的是指定类型的,ArrayList是Object ArrayList存在装箱拆箱,数组不存在 ArrayList数组长度用Count获取 而数组

    2024年02月08日
    浏览(50)
  • 5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

    1.1 DataX概述 源码地址:https://github.com/alibaba/DataX 1.2 DataX支持的数据源 DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图。 2.1 DataX设计理念 为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星

    2024年02月11日
    浏览(58)
  • 从小白到大神之路之学习运维第44天---第三阶段----拓展知识-----文件管理命令(find+sed+awk)、pycharm工具

    第三阶段基础 时  间:2023年6月20日 参加人:全班人员 内  容: 目录 一、文件管理命令 find 1. 根据文件名查找文件 2. 根据文件类型查找文件 3. 根据文件大小查找文件 4. 根据时间戳查找文件 5. 组合多个条件查找文件 Sed 1. 替换文本 2. 插入和删除行 3. 格式化输出 总 结: a

    2024年02月09日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包