MOS管的几条曲线

这篇具有很好参考价值的文章主要介绍了MOS管的几条曲线。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

    以某65N041器件为例,通过分析其曲线,来分析MOS管的工作特性。

一、转移特性曲线(VGS-ID曲线)

mos管转移特性曲线,常用器件,硬件工程

    说明的是栅极电压VGS对ID的控制作用。

    从上图曲线可得到:

    1、测试条件:VDS=20V;

    2、VGS的开启电压VGS(th),约5V,且随着温度的升高而降低;

    3、VGS需要达到10V以上,才能完全导通,达到其最大标称ID;

    4、VGS越大,ID才能越大,温度越高,ID越小;

二、输出特性曲线(VDS-ID曲线)

mos管转移特性曲线,常用器件,硬件工程

      上图可被分为四部分:

1、夹断区(截止区)

    此区域内,VGS未达到VGS(th),MOS管不导通,即ID基本为零;

2、可变电阻区

    此区域内,ID-VDS基本维持线性比例关系,斜率即为MOSFET的导通电子Rds(on)。

3、饱和区

    此区域内,ID不再随着VDS的增大而增大。说明ID已经饱和了。

4、击穿区

    此区域内,因VDS过大,MOSFET被击穿损坏。

    当MOSFET工作在开关状态时,随着VGS的通/断,MOSFET是在截止区和可变电阻区来回切换的,在切换过程中可能会经过饱和区。

    当MOSFET工作于饱和区时,可以用来通过控制VGS的电压来控制电流ID,将MOSFET用于实现上电软起动电路。

三、工作过程图解

    N沟道,增强型MOSFET结构原理图

mos管转移特性曲线,常用器件,硬件工程

  • 当栅-源之间不加电压时即VGS=0时,源漏之间是一个PN结。VDS为正时,PN结反偏,所以不存在导电沟道。

  • UDS=0且UGS>0时,由于绝缘SiO2的存在,栅极电流为零。但是栅极金属层将聚集正电荷.它们排斥P型衬底靠近 SiO2一侧的空穴,使之剩下不能移动的负离子区形成耗尽层,如图6所示

mos管转移特性曲线,常用器件,硬件工程

  •  当UGS增大时,一方面耗尽层增宽,另一方面将衬底的自由电子吸引到耗尽层绝缘层之间,形成一个N型薄层,称为反型层(即由原来的P型变成了N型),如图7所示。这个反型层就构成了漏-源之间的导电沟道
  • 使沟道刚刚形成的栅-源电压称为开启电压UGS(th)或VT。UGS电压越大,形成的反层型越厚,导电沟道电阻越小

mos管转移特性曲线,常用器件,硬件工程

  • VGS>VT且VDS较小时,基本MOS结构的示意图如图8-1所示。图中反型沟道层的厚度左右一致。相应的ID-VDS特性曲线如图8-1所示。两者为固定线性关系。

mos管转移特性曲线,常用器件,硬件工程

  • VGS>VT且VDS增大时,由于漏极电压增大,栅极靠近漏极的相对电压VGD就小,因此沟道受其影响宽窄不同。如图8-2所示。

mos管转移特性曲线,常用器件,硬件工程

  • 要注意的是,这时栅极电压绝对值并没有降低,靠近漏极沟道变窄的原因,是栅极的影响力部分被漏极抵消了。一部分本来可以被栅极吸引形成沟道的电子,就被漏极正电压拉过去了。

mos管转移特性曲线,常用器件,硬件工程

  • VGS>VT且VDS电压继续升高,如果超过VGS-VT,造成沟道右边不满足开通条件而“夹断”。之所以出现夹断点,是因为在这个点,栅极对电子的吸引力被漏极取代。这时候MOS管进入“饱和区”,电流很难继续随电压增大。

mos管转移特性曲线,常用器件,硬件工程

mos管转移特性曲线,常用器件,硬件工程

  • VGS>VT且VDS>VDS(sat)时,如果VDS继续增大,VGD<Vt的预加断点不断左移,夹断区随之延长,如图所示,而且VDS的增大部分几乎全部用于克服夹断区对漏极电流的阻力,漏电流ID为一常数,这种情形在ID-VDS对应于饱和区(恒流区),如图8-4所示。

mos管转移特性曲线,常用器件,硬件工程

    很多同学理解不了既然这时候沟道夹断了,不是应该截止了吗?为什么还会继续有电流?

    原因是虽然理论上沟道已经“夹断”,但这个夹断点很薄弱。为什么说它薄弱?因为夹断点后面支撑它的不是原来P型区域,而是电压升高更吸引电子的漏极及其空间电荷区。因此电子冲入空间电荷区,就相当于几乎没有阻挡的“准自由电子”快速被漏极收集。如图3所示。

mos管转移特性曲线,常用器件,硬件工程

图3. 沟道“夹而不断”(饱和区)

    可以想象,随着靠近漏极的沟道越来越细,很多高速的电子冲过来,一部分挤过夹断点进入空间电荷区,然后被漏极正电场高速收集(形成示意图中紫色电流)。漏极电压越高,夹断点越后退,造成电子越难穿越,因此饱和区电流不再随电压增大而线性增大,毕竟不是所有电子都能冲过夹断点。

    当然,如果漏极的电压继续上升,它的空间电荷区持续扩张达到源极,那么源极的电子就会不受沟道和栅压的控制,直接经过空间电荷区高速到达漏极,这就是源漏直接穿通了,这时MOS管的开关功能也就作废了。文章来源地址https://www.toymoban.com/news/detail-821900.html

到了这里,关于MOS管的几条曲线的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 什么是MOS管的米勒效应

    在说MOS管的米勒效应之前我们先看下示波器测量的这个波形: 这个波形其实就是这个MOS管开关电路的波形,探头1这个黄色的测量的是MOS管的栅极,探头2这个蓝色的测量的是MOS管漏极 大家有没有发现这个黄色的波形在上升的过程中出现了一个平台,其实这个平台我们称之为米

    2024年02月13日
    浏览(42)
  • MOS管的工作原理和区分

    mos管又称绝缘性场效应管,全称是金属-氧化物-半导体场效应晶体管(简称mos管),它是利用绝缘栅极下的p型区与源漏之间的扩散电流和电场在垂直方向上的不同导电特性来工作的。 在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的

    2024年02月16日
    浏览(33)
  • 电子技术——MOS管的小信号模型

    在上一节,我们已经学习过了MOS管的基本线性放大原理,本节我们继续深入MOS管的小信号放大,建立MOS管的小信号模型。 我们本节继续使用上节的电路,如下图所示: 根据上节的知识,我们知道漏极DC电流为: I D = 1 2 k n V O V 2 I_D = frac{1}{2} k_n V_{OV}^2 I D ​ = 2 1 ​ k n ​ V O

    2024年01月25日
    浏览(40)
  • MOS管的工作原理以及设计理念

    一、MOS管工作原理         1、大种类以及结构形式         MOS管总体上分为N型MOS管(N沟道场效应管)和P型MOS管(P沟道场效应管)。它们都是有三个管脚,作用都是开关作用,控制原理都是应用电容的特性,区别之处在于N和P型的电流方向相反。         如图下是

    2024年02月13日
    浏览(45)
  • LNA设计学习心得记录----MOS管的选取

    本文参考相关书籍,仅供学习LNA的过程记录。 在设计LNA之前,要选取合适的MOS管,要对MOS管进行分析 在确定工艺之后,主要仿真两个方面,一个是Vgs对于NFmin,Gmax,二是栅宽对NFmin,Gmax的影响(由于栅长一般选取该工艺下的最小栅长) 由于栅长L减少 所以L越小,fT越大,Fmi

    2024年02月03日
    浏览(87)
  • MOS 管的区分N管和P管和检测

    1、场效应管的特点和分类 (1)利用输入回路的电场效应控制输出回路的电流;仅靠半导体中的多数载流子导电(单极型晶体管);输入阻抗高(10 7 ~10 12 Ω Ω ),噪声低,热稳定性好,抗辐射能力强,功耗小。 2、分类 (2)场效应管可以分为 结型JFET 和 MOSFET 绝缘栅型(

    2024年02月12日
    浏览(33)
  • 这篇文章把MOS管的基础知识讲透了

    MOS管(Metal-Oxide-Semiconductor field-effect transistor)是一种常见的半导体器件,它在数字电路、模拟电路、功率电子等领域都有广泛的应用。本文将从MOS管的基本结构、工作原理、参数特性等方面讲解MOS管的基础知识。 一、MOS管的基本结构 MOS管是由金属(Metal)、氧化物(Oxide)和

    2024年02月07日
    浏览(39)
  • N沟道和P沟道MOS管的四个不同点

    作者:快捷芯(功率半导体创新品牌) 1、芯片材质不同 虽然芯片都是硅基,但是掺杂的材质是不同,使得N沟道MOS管是通过电子形成电流沟道;P沟道MOS管是用空穴流作为载流子。具体原理可以参考一些教科书,属于工艺方面的问题。 2、同等参数P 沟道 MOS管价格更高 (1)

    2024年02月08日
    浏览(35)
  • 【spice】mos器件的特征曲线Ltspice仿真实验【开始学Ltspice 01】

    目录 实验步骤 实验1:看输出特性: 实验2:看转移特性: 同时看 实验问题 20221231 最近需要学习Ltspice,所以记录下学习过程。 建议先简单学习下Ltspice基本操作 前人写的已经很棒了给电路初学者的 LTspice操作入门教程 Step by Step - 知乎 (zhihu.com) 新建一个文件,点击Component 新

    2024年02月08日
    浏览(34)
  • 半导体器件基础09:MOS管特性和应用(2)

    德布罗意家族的历史悠久,他的祖先中出了许许多多将军、元帅、部长,参加过法国几乎所有的战争和各种革命,后来受到路易.腓力的册封,继承了这最高世袭身份的头衔:公爵。路易斯.德布罗意的哥哥:莫里斯.德布罗意便是第六代德布罗意公爵;当1960年莫里斯去世以后,

    2024年02月15日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包