基于密度的聚类算法(1)——DBSCAN详解

这篇具有很好参考价值的文章主要介绍了基于密度的聚类算法(1)——DBSCAN详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于密度的聚类算法(1)——DBSCAN详解
基于密度的聚类算法(2)——OPTICS详解
基于密度的聚类算法(3)——DPC详解

1. DBSCAN简介
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种典型的基于密度的空间聚类算法。和K-Means,BIRCH这些一般只适用于凸样本集的聚类相比,DBSCAN既可以适用于凸样本集,也可以适用于非凸样本集。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。

该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。DBSCAN算法的显著优点是聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类。但是当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差。

2. DBSCAN的优缺点
和传统的K-Means算法相比,DBSCAN最大的不同就是不需要输入类别数k,最大的优势是可以发现任意形状的聚类簇,而不是像K-Means,一般仅仅使用于凸的样本集聚类。同时它在聚类的同时还可以找出异常点,这点和BIRCH算法类似。

那么什么时候需要用DBSCAN来聚类呢?一般来说,如果数据集是稠密的,并且数据集不是凸的,那么用DBSCAN会比K-Means聚类效果好很多。如果数据集不是稠密的,则不推荐用DBSCAN来聚类。
(1)DBSCAN的优点:
1) 可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集。
2) 可以在聚类的同时发现异常点,对数据集中的异常点不敏感。
3) 聚类结果没有偏倚,相对的,K-Means之类的聚类算法初始值对聚类结果有很大影响。
(2)DBSCAN的缺点:
1)如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合。
2) 如果样本集较大时,聚类收敛时间较长,此时可以对搜索最近邻时建立的KD树或者球树进行规模限制来改进。
3) 调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值ϵ,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响

3. DBSCAN详细描述及参数含义
DBSCAN是基于一组邻域来描述样本集的紧密程度的,参数(ϵ, MinPts)用来描述邻域的样本分布紧密程度。其中,ϵ描述了某一样本的邻域距离阈值,MinPts描述了某一样本的距离为ϵ的邻域中样本个数的阈值。
    假设样本集是*D=(x1,x2,...,xm)*,则DBSCAN具体的密度描述如下:
    1) ϵ-邻域:对于xj∈D,其ϵ-邻域包含样本集D中与xj的距离不大于ϵ的子样本集,即Nϵ(xj)={xi∈D|distance(xi,xj)≤ϵ}, 这个子样本集的个数记为|Nϵ(xj)| 
    2) 核心对象:对于任一样本xj∈D,如果其ϵ-邻域对应的Nϵ(xj)至少包含MinPts个样本,即如果|Nϵ(xj)|≥MinPts,则xj是核心对象。 
    3)密度直达:如果xi位于xjϵ-邻域中,且xj是核心对象,则称xi由xj密度直达。注意反之不一定成立,即此时不能说xj由xi密度直达, 除非且xi也是核心对象。
    4)密度可达:对于xixj,如果存在样本样本序列p1,p2,...,pT,满足p1=xi,pT=xj, 且pt+1pt密度直达,则称xj由xi密度可达。也就是说,密度可达满足传递性。此时序列中的传递样本p1,p2,...,pT−1均为核心对象,因为只有核心对象才能使其他样本密度直达。注意密度可达也不满足对称性,这个可以由密度直达的不对称性得出。
    5)密度相连:对于xixj,如果存在核心对象样本xk,使xixj均由xk密度可达,则称xixj密度相连。注意密度相连关系是满足对称性的。

从下图可以很容易看出理解上述定义,图中MinPts=5,红色的点都是核心对象,因为其ϵ-邻域至少有5个样本。黑色的样本是非核心对象。所有核心对象密度直达的样本在以红色核心对象为中心的超球体内,如果不在超球体内,则不能密度直达。图中用绿色箭头连起来的核心对象组成了密度可达的样本序列。在这些密度可达的样本序列的ϵ-邻域内所有的样本相互都是密度相连的。
dbscan聚类,聚类算法原理解析及实现,聚类,算法
4. DBSCAN思想
  DBSCAN的聚类定义很简单:由密度可达关系导出的最大密度相连的样本集合,即为我们最终聚类的一个类别,或者说一个簇。
  这个DBSCAN的簇里面可以有一个或者多个核心对象。如果只有一个核心对象,则簇里其他的非核心对象样本都在这个核心对象的ϵ-邻域里;如果有多个核心对象,则簇里的任意一个核心对象的ϵ-邻域中一定有一个其他的核心对象,否则这两个核心对象无法密度可达。这些核心对象的ϵ-邻域里所有的样本的集合组成的一个DBSCAN聚类簇
    
  那么怎么才能找到这样的簇样本集合呢?DBSCAN使用的方法很简单,它任意选择一个没有类别的核心对象作为种子,然后找到所有这个核心对象能够密度可达的样本集合,即为一个聚类簇。接着继续选择另一个没有类别的核心对象去寻找密度可达的样本集合,这样就得到另一个聚类簇。一直运行到所有核心对象都有类别为止。

这基本上就是DBSCAN算法的主要内容了,但是还有三个问题没有考虑:
  1)一些异常样本点或者说少量游离于簇外的样本点,这些点不在任何一个核心对象在周围,在DBSCAN中,我们一般将这些样本点标记为噪音点。
  2)距离的度量问题,即如何计算某样本和核心对象样本的距离。在DBSCAN中,一般采用最近邻思想,采用某一种距离度量来衡量样本距离,比如欧式距离。这和KNN分类算法的最近邻思想完全相同。对应少量的样本,寻找最近邻可以直接去计算所有样本的距离,如果样本量较大,则一般采用KD树或者球树来快速的搜索最近邻。
  3)第三种问题比较特殊,某些样本可能到两个核心对象的距离都小于ϵ,但是这两个核心对象由于不是密度直达,又不属于同一个聚类簇,那么如果界定这个样本的类别呢?一般来说,此时DBSCAN采用先来后到,先进行聚类的类别簇会标记这个样本为它的类别。也就是说DBSCAN的算法不是完全稳定的算法

5. DBSCAN算法步骤
下面是DBSCAN聚类算法的主要步骤
  输入:样本集D=(x1,x2,...,xm),邻域参数(ϵ,MinPts), 样本距离度量方式
  输出: 簇划分C. 
  
  1)初始化核心对象集合Ω=∅, 初始化聚类簇数k=0,初始化未访问样本集合Γ = D, 簇划分C = ∅
  2) 对于j=1,2,…m, 按下面的步骤找出所有的核心对象:
    a) 通过距离度量方式,找到样本xjϵ-邻域子样本集Nϵ(xj)
    b) 如果子样本集样本个数满足|Nϵ(xj)|≥MinPts, 将样本xj加入核心对象样本集合:Ω=Ω∪{xj}
  3)如果核心对象集合Ω=∅,则算法结束,否则转入步骤4.
  4)在核心对象集合Ω中,随机选择一个核心对象o,初始化当前簇核心对象队列Ωcur={o}, 初始化类别序号k=k+1,初始化当前簇样本集合Ck={o}, 更新未访问样本集合Γ=Γ−{o}
  5)如果当前簇核心对象队列Ωcur=∅,则当前聚类簇Ck生成完毕, 更新簇划分C={C1,C2,...,Ck}, 更新核心对象集合Ω=Ω−Ck, 转入步骤3。否则更新核心对象集合Ω=Ω−Ck
  6)在当前簇核心对象队列Ωcur中取出一个核心对象o′,通过邻域距离阈值ϵ找出所有的ϵ-邻域子样本集Nϵ(o′),令Δ=Nϵ(o′)∩Γ, 更新当前簇样本集合Ck=Ck∪Δ, 更新未访问样本集合Γ=Γ−Δ, 更新Ωcur=Ωcur∪(Δ∩Ω)−o′,转入步骤5.
  输出结果为: 簇划分C={C1,C2,…,Ck}

6. DBSCAN算法在python scikit-learn实现
  在scikit-learn中,DBSCAN算法类为sklearn.cluster.DBSCAN。要熟练的掌握用DBSCAN类来聚类,除了对DBSCAN本身的原理有较深的理解以外,还要对最近邻的思想有一定的理解。
  DBSCAN重要参数也分为两类,一类是DBSCAN算法本身的参数,一类是最近邻度量的参数:
  1)eps: DBSCAN算法参数,即我们的ϵ-邻域的距离阈值,和样本距离超过ϵ的样本点不在ϵ-邻域内。默认值是0.5.一般需要通过在多组值里面选择一个合适的阈值。eps过大,则更多的点会落在核心对象的ϵ-邻域,此时我们的类别数可能会减少, 本来不应该是一类的样本也会被划为一类。反之则类别数可能会增大,本来是一类的样本却被划分开。
  2)min_samples: DBSCAN算法参数,即样本点要成为核心对象所需要的ϵ-邻域的样本数阈值。默认值是5. 一般需要通过在多组值里面选择一个合适的阈值。通常和eps一起调参。在eps一定的情况下,min_samples过大,则核心对象会过少,此时簇内部分本来是一类的样本可能会被标为噪音点,类别数也会变多。反之min_samples过小的话,则会产生大量的核心对象,可能会导致类别数过少。
  3)metric:最近邻距离度量参数。可以使用的距离度量较多,一般来说DBSCAN使用默认的欧式距离(即p=2的闵可夫斯基距离)就可以满足我们的需求。可以使用的距离度量参数有:
    a) 欧式距离 “euclidean”
    b) 曼哈顿距离 “manhattan”
    c) 切比雪夫距离“chebyshev”
    d) 闵可夫斯基距离 “minkowski”
    e) 带权重闵可夫斯基距离 “wminkowski”
    f) 标准化欧式距离 “seuclidean”: 即对于各特征维度做了归一化以后的欧式距离。此时各样本特征维度的均值为0,方差为1.
    g) 马氏距离“mahalanobis”:当样本分布独立时,马氏距离等同于欧式距离。
 还有一些其他不是实数的距离度量,一般在DBSCAN算法用不上,这里也就不列了。
  
  4)algorithm:最近邻搜索算法参数,算法一共有三种,第一种是蛮力实现,第二种是KD树实现,第三种是球树实现。对于这个参数,一共有4种可选输入,‘brute’对应第一种蛮力实现,‘kd_tree’对应第二种KD树实现,‘ball_tree’对应第三种的球树实现, ‘auto’则会在上面三种算法中做权衡,选择一个拟合最好的最优算法。需要注意的是,如果输入样本特征是稀疏的时候,无论我们选择哪种算法,最后scikit-learn都会去用蛮力实现‘brute’。个人的经验,一般情况使用默认的 ‘auto’就够了。 如果数据量很大或者特征也很多,用"auto"建树时间可能会很长,效率不高,建议选择KD树实现‘kd_tree’,此时如果发现‘kd_tree’速度比较慢或者已经知道样本分布不是很均匀时,可以尝试用‘ball_tree’。而如果输入样本是稀疏的,无论你选择哪个算法最后实际运行的都是‘brute’。
  5)leaf_size:最近邻搜索算法参数,为使用KD树或者球树时, 停止建子树的叶子节点数量的阈值。这个值越小,则生成的KD树或者球树就越大,层数越深,建树时间越长,反之,则生成的KD树或者球树会小,层数较浅,建树时间较短。默认是30. 因为这个值一般只影响算法的运行速度和使用内存大小,因此一般情况下可以不管它。
  6) p: 最近邻距离度量参数。只用于闵可夫斯基距离和带权重闵可夫斯基距离中p值的选择,p=1为曼哈顿距离, p=2为欧式距离。如果使用默认的欧式距离不需要管这个参数。
  以上就是DBSCAN类的主要参数介绍,需要调参的两个参数eps和min_samples,这两个值的组合对最终的聚类效果有很大的影响。因此,DBSCAN聚类算法的结果对参数比较敏感,基于DBSCAN开发的OPTICS聚类算法则很好的解决了这个问题,后续会更新OPTICS算法的详解。

生成一组随机数据,为了体现DBSCAN在非凸数据的聚类优点,我们生成了三簇数据,两组是非凸的

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
%matplotlib inline
X1, y1=datasets.make_circles(n_samples=5000, factor=.6,
                                      noise=.05)
X2, y2 = datasets.make_blobs(n_samples=1000, n_features=2, centers=[[1.2,1.2]], cluster_std=[[.1]],
               random_state=9)

X = np.concatenate((X1, X2))
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

dbscan聚类,聚类算法原理解析及实现,聚类,算法

1)利用K-Means聚类,代码如下:

from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

dbscan聚类,聚类算法原理解析及实现,聚类,算法
2)使用DBSCAN,用默认参数,代码如下:

from sklearn.cluster import DBSCAN
y_pred = DBSCAN().fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

dbscan聚类,聚类算法原理解析及实现,聚类,算法
但是聚类结果是只有一类。。。

3)使用DBSCAN,调整两个重要参数:
从上图可以发现,类别数太少,因此需要增加类别数,可以通过减少ϵ-邻域的大小来实现,默认是0.5,减到0.1看看效果。代码如下:

y_pred = DBSCAN(eps = 0.1).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

dbscan聚类,聚类算法原理解析及实现,聚类,算法
可以看到聚类效果有了改进。继续调参增加类别,有两个方向都是可以的,一个是继续减少eps,另一个是增加min_samples。将min_samples从默认的5增加到10,代码如下:

y_pred = DBSCAN(eps = 0.1, min_samples = 10).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

dbscan聚类,聚类算法原理解析及实现,聚类,算法
此时的聚类效果基本是可以令人满意的。

7. 总结
DBSCAN需要调参的两个参数eps和min_samples,这两个值的组合对最终的聚类效果有很大的影响,即DBSCAN聚类算法的结果对参数比较敏感。
基于DBSCAN开发的OPTICS聚类算法,则很好的解决了这个问题,后续会更新OPTICS算法的详解与应用。
此外,DBSCAN的matlab函数也已更新在资源中,有需要的也可以评论或者留言找我要!!
https://download.csdn.net/download/weixin_50514171/85192429?spm=1001.2014.3001.5503文章来源地址https://www.toymoban.com/news/detail-821902.html

到了这里,关于基于密度的聚类算法(1)——DBSCAN详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • KMeans+DBSCAN密度聚类+层次聚类的使用(文末送书)

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.KMeans聚类算法 2.DBSCAN密度聚类算法 3.层次聚类 4.实战案例 4.1数据集介绍 4.2加载数据

    2024年02月07日
    浏览(45)
  • KMeans+DBSCAN密度聚类+层次聚类的使用(附案例实战)

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.KMeans聚类算法 2.DBSCAN密度聚类算法 3.层次聚类 4.实战案例 4.1数据集介绍 4.2加载数据

    2024年02月08日
    浏览(43)
  • 聚类算法--DBSCAN算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个基于密度的聚类算法。算法把簇看作数据空间中由低密度区域分割开的高密度对象区域;将足够高密度的区域划为簇,可以在有噪音的数据集中发现任意形状的聚类。 在DBSCAN 算法中有两个重要的参数: Eps 和 MinPtS 。

    2024年01月21日
    浏览(42)
  • DBSCAN聚类算法

    DBSCAN (density-based spatial clustering of applications with noise),即“具有噪声的基于密度的空间聚类应用”。它的原理是识别特征空间的“拥挤”区域中的点,在这些区域中许多点靠在一起,这些区域称为特征空间中的 密集 区域。密集区域最终将有相对较空的区域分隔开。 在密集区

    2024年02月06日
    浏览(47)
  • DBSCAN聚类算法——MATLAB实现

        声明:本文修改自《 数学建模清风 》老师的代码    DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪

    2024年02月11日
    浏览(43)
  • 毫米波雷达点云 DBSCAN聚类算法

    聚类的目的是将一组数据点划分为具有相似特征或属性的组或簇。通过聚类分析,我们可以识别出数据中的内在模式、结构和关联关系,从而获得对数据的更深入理解。 具体来说,聚类的目的可以分为以下三部分: 发现数据的内在结构: 聚类可以将数据分成簇,这些簇可能

    2024年02月06日
    浏览(46)
  • 【机器学习】DBSCAN聚类算法(含Python实现)

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,可以将数据点分成不同的簇,并且能够识别噪声点(不属于任何簇的点)。 DBSCAN聚类算法的基本思想是: 在给定的数据集中,根据每个数据点周围其他数据点的密度情况,将数据点分为核心点

    2023年04月23日
    浏览(52)
  • 深度解读DBSCAN聚类算法:技术与实战全解析

    探索DBSCAN算法的内涵与应用,本文详述其理论基础、关键参数、实战案例及最佳实践,揭示如何有效利用DBSCAN处理复杂数据集,突破传统聚类限制。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智

    2024年02月05日
    浏览(47)
  • 【机器学习】聚类算法-DBSCAN基础认识与实战案例

    在机器学习中,聚类是一种常见的无监督学习方法,它的目标是将数据集中的数据点分成不同的组,每个组之间具有相似的特征。聚类可以用于各种应用程序,如图像分割,社交媒体分析,医疗数据分析等。DBSCAN是一种聚类算法,它被广泛应用于各种领域。 DBSCAN(Density-Bas

    2024年04月15日
    浏览(54)
  • C# | DBSCAN聚类算法实现 —— 对直角坐标系中临近点的点进行聚类

    聚类算法是一种常见的数据分析技术,用于将相似的数据对象归类到同一组或簇中。其中,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,能够有效地识别出不同形状和大小的簇,同时还能标识出噪声数据。本篇博客将介绍聚类算法的概念

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包