【自然语言处理】【深度学习】文本向量化、one-hot、word embedding编码

这篇具有很好参考价值的文章主要介绍了【自然语言处理】【深度学习】文本向量化、one-hot、word embedding编码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

因为文本不能够直接被模型计算,所以需要将其转化为向量
把文本转化为向量有两种方式:

  • 转化为one-hot编码
  • 转化为word embedding

一、one-hot 编码

在one-hot编码中,每一个token使用一个长度为N的向量表示,N表示词典的数量。
即:把待处理的文档进行分词或者是N-gram处理,然后进行去重得到词典。

  • 例:假设我们有一个文档:“深度学习”,那么进行one-hot处理后得到的结果如下
token one-hot encoding
1000
0100
0010
0001

弊端:我们有1万个词的时候,编码很长,而且只有一个位置的1有效。使用稀疏向量表示文本,占用空间比较大。

二、word embedding编码

word embedding是深度学习中表示文本常用的一种方法。和one-hot编码不同,word embedding使用了浮点型的稠密矩阵来表示token。根据词典的大小,我们的向量通常使用不同的维度,例如100,256,300等。其中向量中的每一个值是一个超参数,其初始值是随机生成的,之后会在训练的过程中进行学习中获得。Word embedding 的目标是捕捉词语之间的语义关系,使得相似含义的词在向量空间中的表示更为接近。

如果我们文本中有20000个词语,如果使用one-hot编码,那么我们会有20000*20000的矩阵,其中大多数的位置都为0,但是如果我们使用word embedding来表示的话,只需要20000*维度,比如20000*300的形象表示就是:

token num vector
词1 0 [w11,w12,w13···w1N],其中N表示维度(dimension)
词2 1 [w21,w22,w23···w2N]
词3 2 [w31,w32,w33···w3N]
··· ··· ···
词m m [wm1,wm2,wm3···wmN],其中m表示词典的大小

我们会把所有的文本转化为向量,把句子用向量来表示
在这之间,我们会先把token使用数字来表示再把数字用向量来表示
即:token —> num —> vector。
比如,dog是1,cat是2,lion是3,然后再将1、2、3转化为向量。

token d1 d2 d3 d4
dog -0.4 0.37 0.02 -0.34
cat -0.15 -0.02 -0.23 -0.23
lion 0.19 -0.4 0.35 -0.48
tiger -0.08 0.31 0.56 0.07
elephant -0.04 -0.09 0.11 -0.06
cheetah 0.27 -0.28 -0.2 -0.43
monkey -0.02 -0.67 -0.21 -0.48
rabbit -0.04 -0.3 -0.18 -0.47
mouse 0.09 -0.46 -0.35 -0.24

2.1 word embedding数据形状转化

【自然语言处理】【深度学习】文本向量化、one-hot、word embedding编码,自然语言处理,深度学习

这批batch的每个句子有N个词,总共有batch_size个句子,也就是说这批batch的形状为[batch_size, N]。

word embedding规定,每个词映射到长度为4的向量上,即维度为4。其形状为[M, D]

这批batch经过word embedding后,查询其中的词典(M个词),把每一个句子的词映射到其中的向量上,最终batch的形状变成了[batch_size, N, D]。

2.2 word embedding API

torch.nn.Embedding(num_embeddings,embedding_dim)
参数:

  • num_embbeding:词典的大小
  • embedding_dim: embedding的维度

使用方法:

embedding = nn.Embedding(vocab_size,300)#实例化
input_embed = embedding(input) #进行embedding操作

2.3数据形状的变化

思考:每一个batch中的句子有10个词语,经过形状为[20, 4]的word embedding之后,原来的句子会变成什么形状?

因为word emdedding规定每个词用长度为4的向量表示,所以batch中每个句子中的10个词语会分布到向量的4个分量上,最终变成[batch_size, 10, 4]。

做图码字不易,可以点个赞嘛,谢谢你~~~文章来源地址https://www.toymoban.com/news/detail-821918.html

到了这里,关于【自然语言处理】【深度学习】文本向量化、one-hot、word embedding编码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习与大数据技术的进步:自然语言处理的显著突破

    引言: 随着深度学习和大数据技术的迅速发展,自然语言处理(Natural Language Processing,简称NLP)在过去几年取得了令人瞩目的进步。NLP是研究计算机如何理解和生成人类语言的领域,它在改善搜索引擎、语音助手、机器翻译等领域的应用中发挥着重要作用。本文将探讨深度学

    2024年01月23日
    浏览(67)
  • MATLAB算法实战应用案例精讲-【深度学习】自然语言处理模型SimCSE

    目录 前言 1.介绍 2.对比学习背景 2.1定义 2.2构造正样本 2.3对齐性和均匀性

    2024年02月11日
    浏览(67)
  • 深度学习和大数据技术的进步在自然语言处理领域的应用

    随着深度学习和大数据技术的迅猛发展,自然语言处理(Natural Language Processing,NLP)取得了显著的进步。人们正在积极研究如何使计算机更好地理解和生成人类语言,并且在搜索引擎、语音助手、机器翻译等领域广泛应用NLP技术。本文将重点探讨深度学习和大数据技术在NLP领

    2024年01月23日
    浏览(79)
  • 自然语言处理—文本分类综述/什么是文本分类

    最近在学习文本分类,读了很多博主的文章,要么已经严重过时(还在一个劲介绍SVM、贝叶斯),要么就是机器翻译的别人的英文论文,几乎看遍全文,竟然没有一篇能看的综述,花了一个月时间,参考了很多文献,特此写下此文。 https://www.processon.com/mindmap/61888043e401fd453a21e

    2023年04月08日
    浏览(47)
  • 自然语言之文本预处理

    概念 分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划界,唯独词没有一个形式上的分界符。分词过程就是找到这样分界符的过程. 作用 词作为语言

    2024年02月06日
    浏览(46)
  • Python 自然语言处理 文本分类 地铁方面留言文本

    将关于地铁的留言文本进行自动分类。 不要着急,一步步来。 导入需要的库。 定义函数,加载用来分词的自定义词典。 定义函数,生成自己的停用词词典,得到一个文件。 我找的4个停用词词典下载地址:https://gitcode.net/mirrors/goto456/stopwords/-/tree/master 后面我会把自己整合好

    2024年02月09日
    浏览(65)
  • 【自然语言处理】实验3,文本情感分析

    清华大学驭风计划课程链接  学堂在线 - 精品在线课程学习平台 (xuetangx.com) 代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主 有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~ 情感分析

    2024年02月19日
    浏览(46)
  • 自然语言处理-文本表示: Embedding技术

    目录 I. 引言 A. 文本表示介绍 B. 引入Embedding技术的重要性和应用领域 II. 传统文本表示方法 A. One-Hot编码 B. 词袋模型 C. TF-IDF III. 什么是文本表示-Embedding A. 定义和概念 B. Embedding的目标和作用 IV. 常见Embedding技术 A. Word2Vec 1. CBOW模型 2. Skip-gram模型 3. 结构与训练方法 B. GloVe 1. 全局

    2024年02月16日
    浏览(70)
  • 阶段五:深度学习和人工智能(学习人工智能的应用领域,如自然语言处理,计算机视觉等)

    Python是人工智能领域最流行的编程语言之一,它具有简单易学、功能强大、库丰富等优点,因此在自然语言处理、计算机视觉等领域得到了广泛应用。 自然语言处理 自然语言处理是人工智能领域的一个重要分支,它主要研究如何让计算机理解和处理人类语言。Python在自然语

    2024年02月04日
    浏览(80)
  • 【自然语言】使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化

    一、任务目标 python代码写将 HarryPorter 电子书作为语料库,分别使用词袋模型,TF-IDF模型和Word2Vec模型进行文本向量化。 1. 首先将数据预处理,Word2Vec 训练时要求考虑每个单词前后的五个词汇,地址为 作为其上下文 ,生成的向量维度为50维 2.分别搜索 courtroom 和 wizard 这两个词

    2024年04月14日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包