【极数系列】Flink 初相识(01)

这篇具有很好参考价值的文章主要介绍了【极数系列】Flink 初相识(01)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#【Flink 初相识】Flink是什么?

引言

Flink官网:https://flink.apache.org/

Flink版本:https://flink.apache.org/blog/

Flink文档:https://ci.apache.org/projects/flink/flink-docs-release-1.12/

Flink代码库:https://github.com/apache/flink

一. Flink简介

Apache Flink是一个框架和分布式处理引擎,用于在无界和有界数据流上进行有状态计算。Flink被设计为在所有常见的集群环境中运行,以内存中的速度和任何规模执行计算。

二.Flink架构

1.处理无边界和有边界的数据

任何类型的数据都是作为事件流生成的。信用卡交易、传感器测量、机器日志或网站或移动应用程序上的用户交互,所有这些数据都以流的形式生成

【极数系列】Flink 初相识(01),极数系列,flink,大数据,java,分布式

(1)无界数据

有开始但没有明确的结束:它们不会在生成数据时终止并提供数据。无边界流必须持续处理,即事件在被摄入后必须立即处理。不可能等待所有输入数据到达,因为输入是无限的,并且在任何时间点都不完整。处理无边界数据通常需要按照特定的顺序(如事件发生的顺序)接收事件,以便能够推断结果的完整性。

(2)有界数据

有一个明确的开始和结束:可以通过在执行任何计算之前摄取所有数据来处理有界流。处理有界流不需要有序摄取,因为有界数据集总是可以排序的,有界流的处理也称为批处理。

2.随时随地部署应用程序

(1)ApacheFlink是一个分布式系统,需要计算资源才能执行应用程序。Flink集成了所有常见的集群资源管理器,如Hadoop YARN和Kubernetes,但也可以设置为作为独立集群运行。

(2)Flink的设计目的是让前面列出的每个资源管理器都能很好地工作。这是通过特定于资源管理器的部署模式实现的,这些模式允许Flink以其惯用的方式与每个资源管理器交互。

(3)部署Flink应用程序时,Flink会根据应用程序配置的并行度自动识别所需资源,并向资源管理器请求这些资源。如果出现故障,Flink会通过请求新的资源来替换出现故障的容器。提交或控制应用程序的所有通信都是通过REST调用进行的。这简化了Flink在许多环境中的集成。

3.以任何规模运行应用程序

Flink旨在以任何规模运行有状态流应用程序。应用程序被并行化为可能数千个任务,这些任务在集群中分布并并发执行。因此,一个应用程序可以利用几乎无限数量的CPU、主内存、磁盘和网络IO。此外,Flink可以轻松地维护非常大的应用程序状态。它的异步和增量检查点算法确保了对处理延迟的最小影响,同时保证了一次状态的一致性。

(1)应用程序每天处理数万亿个事件,

(2)应用程序维护数TB的状态,

(3)运行在数千个核心上的应用程序。

4.利用内存性能

Stateful Flink应用程序针对本地状态访问进行了优化。任务状态始终保持在内存中,或者,如果状态大小超过可用内存,则保持在磁盘数据结构上的高效访问中。因此,任务通过访问本地(通常在内存中)状态来执行所有计算,从而产生非常低的处理延迟。Flink通过定期异步地将本地状态检查点指向持久存储,在出现故障时保证了一次状态的一致性。

【极数系列】Flink 初相识(01),极数系列,flink,大数据,java,分布式

三. Flink应用场景

Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括:批流一体化、精密的状态管理、事件时间支持以及精确一次的状态一致性保障等。Flink 不仅可以运行在包括 YARN、 Mesos、Kubernetes 在内的多种资源管理框架上,还支持在裸机集群上独立部署。在启用高可用选项的情况下,它不存在单点失效问题。事实证明,Flink 已经可以扩展到数千核心,其状态可以达到 TB 级别,且仍能保持高吞吐、低延迟的特性。世界各地有很多要求严苛的流处理应用都运行在 Flink 之上

【极数系列】Flink 初相识(01),极数系列,flink,大数据,java,分布式

1.事件驱动型应用

(1)简介

a.事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。

b.事件驱动型应用是在计算存储分离的传统应用基础上进化而来。

c.在传统架构中,应用需要读写远程事务型数据库。相反,事件驱动型应用是基于状态化流处理来完成。在该设计中,数据和计算不会分离,应用只需访问本地(内存或磁盘)即可获取数据。系统容错性的实现依赖于定期向远程持久化存储写入 checkpoint。

d. 传统应用和事件驱动型应用架构的区别,如图:

【极数系列】Flink 初相识(01),极数系列,flink,大数据,java,分布式

(2)优势

事件驱动型应用无须查询远程数据库,本地数据访问使得它具有更高的吞吐和更低的延迟。而由于定期向远程持久化存储的 checkpoint 工作可以异步、增量式完成,因此对于正常事件处理的影响甚微。事件驱动型应用的优势不仅限于本地数据访问。传统分层架构下,通常多个应用会共享同一个数据库,因而任何对数据库自身的更改(例如:由应用更新或服务扩容导致数据布局发生改变)都需要谨慎协调。反观事件驱动型应用,由于只需考虑自身数据,因此在更改数据表示或服务扩容时所需的协调工作将大大减少。

(3)如何支持

a. 事件驱动型应用会受制于底层流处理系统对时间和状态的把控能力,Flink 诸多优秀特质都是围绕这些方面来设计的。它提供了一系列丰富的状态操作原语,允许以精确一次的一致性语义合并海量规模(TB 级别)的状态数据。此外,Flink 还支持事件时间和自由度极高的定制化窗口逻辑,而且它内置的 ProcessFunction 支持细粒度时间控制,方便实现一些高级业务逻辑。同时,Flink 还拥有一个复杂事件处理(CEP)类库,可以用来检测数据流中的模式。

b. Flink 中针对事件驱动应用的明星特性当属 savepoint。Savepoint 是一个一致性的状态映像,它可以用来初始化任意状态兼容的应用。在完成一次 savepoint 后,即可放心对应用升级或扩容,还可以启动多个版本的应用来完成 A/B 测试。

(4)应用实例

  • 反欺诈
  • 异常检测
  • 基于规则的报警
  • 业务流程监控
  • (社交网络)Web 应用

2.数据分析应用

(1)简介

a. 数据分析任务需要从原始数据中提取有价值的信息和指标。传统的分析方式通常是利用批查询,或将事件记录下来并基于此有限数据集构建应用来完成。为了得到最新数据的分析结果,必须先将它们加入分析数据集并重新执行查询或运行应用,随后将结果写入存储系统或生成报告。

b. 借助一些先进的流处理引擎,还可以实时地进行数据分析。和传统模式下读取有限数据集不同,流式查询或应用会接入实时事件流,并随着事件消费持续产生和更新结果。这些结果数据可能会写入外部数据库系统或以内部状态的形式维护。仪表展示应用可以相应地从外部数据库读取数据或直接查询应用的内部状态

c.支持流式及批量分析应用 ,如图

【极数系列】Flink 初相识(01),极数系列,flink,大数据,java,分布式

(2)优势

a. 和批量分析相比,由于流式分析省掉了周期性的数据导入和查询过程,因此从事件中获取指标的延迟更低。不仅如此,批量查询必须处理那些由定期导入和输入有界性导致的人工数据边界,而流式查询则无须考虑该问题。

b. 另一方面,流式分析会简化应用抽象。批量查询的流水线通常由多个独立部件组成,需要周期性地调度提取数据和执行查询。如此复杂的流水线操作起来并不容易,一旦某个组件出错将会影响流水线的后续步骤。而流式分析应用整体运行在 Flink 之类的高端流处理系统之上,涵盖了从数据接入到连续结果计算的所有步骤,因此可以依赖底层引擎提供的故障恢复机制。

(3)如何支持

Flink 为持续流式分析和批量分析都提供了良好的支持。具体而言,它内置了一个符合 ANSI 标准的 SQL 接口,将批、流查询的语义统一起来。无论是在记录事件的静态数据集上还是实时事件流上,相同 SQL 查询都会得到一致的结果。同时 Flink 还支持丰富的用户自定义函数,允许在 SQL 中执行定制化代码。如果还需进一步定制逻辑,可以利用 Flink DataStream API 和 DataSet API 进行更低层次的控制。

(4)应用实例

  • 电信网络质量监控
  • 移动应用中的产品更新及实验评估分析
  • 消费者技术中的实时数据即席分析
  • 大规模图分析

3.数据管道应用

(1)简介

a. 提取-转换-加载(ETL)是一种在存储系统之间进行数据转换和迁移的常用方法。ETL 作业通常会周期性地触发,将数据从事务型数据库拷贝到分析型数据库或数据仓库。

b. 数据管道和 ETL 作业的用途相似,都可以转换、丰富数据,并将其从某个存储系统移动到另一个。但数据管道是以持续流模式运行,而非周期性触发。因此它支持从一个不断生成数据的源头读取记录,并将它们以低延迟移动到终点。例如:数据管道可以用来监控文件系统目录中的新文件,并将其数据写入事件日志;另一个应用可能会将事件流物化到数据库或增量构建和优化查询索引

c. 周期性 ETL 作业和持续数据管道的差异 ,如图

【极数系列】Flink 初相识(01),极数系列,flink,大数据,java,分布式

(2)优势

和周期性 ETL 作业相比,持续数据管道可以明显降低将数据移动到目的端的延迟。此外,由于它能够持续消费和发送数据,因此用途更广,支持用例更多。

(3)如何支持

很多常见的数据转换和增强操作可以利用 Flink 的 SQL 接口(或 Table API)及用户自定义函数解决。如果数据管道有更高级的需求,可以选择更通用的 DataStream API 来实现。Flink 为多种数据存储系统(如:Kafka、Kinesis、Elasticsearch、JDBC数据库系统等)内置了连接器。同时它还提供了文件系统的连续型数据源及数据汇,可用来监控目录变化和以时间分区的方式写入文件。

(4)应用实例

  • 电子商务中的实时查询索引构建
  • 电子商务中的持续 ETL

四.Flink运维

Apache Flink 是一个针对无界和有界数据流进行有状态计算的框架。由于许多流应用程序旨在以最短的停机时间连续运行,因此流处理器必须提供出色的故障恢复能力,以及在应用程序运行期间进行监控和维护的工具。

1.7 * 24小时稳定运行

在分布式系统中,服务故障是常有的事,为了保证服务能够7*24小时稳定运行,像Flink这样的流处理器故障恢复机制是必须要有的。显然这就意味着,它(这类流处理器)不仅要能在服务出现故障时候能够重启服务,而且还要当故障发生时,保证能够持久化服务内部各个组件的当前状态,只有这样才能保证在故障恢复时候,服务能够继续正常运行,好像故障就没有发生过一样。

  • 检查点的一致性: Flink的故障恢复机制是通过建立分布式应用服务状态一致性检查点实现的,当有故障产生时,应用服务会重启后,再重新加载上一次成功备份的状态检查点信息。结合可重放的数据源,该特性可保证*精确一次(exactly-once)*的状态一致性。
  • 高效的检查点: 如果一个应用要维护一个TB级的状态信息,对此应用的状态建立检查点服务的资源开销是很高的,为了减小因检查点服务对应用的延迟性(SLAs服务等级协议)的影响,Flink采用异步及增量的方式构建检查点服务。
  • 端到端的精确一次: Flink 为某些特定的存储支持了事务型输出的功能,及时在发生故障的情况下,也能够保证精确一次的输出。
  • 集成多种集群管理服务: Flink已与多种集群管理服务紧密集成,如 Hadoop YARN, Mesos, 以及 Kubernetes。当集群中某个流程任务失败后,一个新的流程服务会自动启动并替代它继续执行。
  • 内置高可用服务: Flink内置了为解决单点故障问题的高可用性服务模块,此模块是基于Apache ZooKeeper 技术实现的,Apache ZooKeeper是一种可靠的、交互式的、分布式协调服务组件。

2.Flink能够更方便地升级、迁移、暂停、恢复应用服务

(1)驱动关键业务服务的流应用是经常需要维护的。比如需要修复系统漏洞,改进功能,或开发新功能。然而升级一个有状态的流应用并不是简单的事情,因为在我们为了升级一个改进后版本而简单停止当前流应用并重启时,我们还不能丢失掉当前流应用的所处于的状态信息。

(2)Flink的 Savepoint 服务就是为解决升级服务过程中记录流应用状态信息及其相关难题而产生的一种唯一的、强大的组件。一个 Savepoint,就是一个应用服务状态的一致性快照,因此其与checkpoint组件的很相似,但是与checkpoint相比,Savepoint 需要手动触发启动,而且当流应用服务停止时,它并不会自动删除。Savepoint 常被应用于启动一个已含有状态的流服务,并初始化其(备份时)状态

  • 便于升级应用服务版本: Savepoint 常在应用版本升级时使用,当前应用的新版本更新升级时,可以根据上一个版本程序记录的 Savepoint 内的服务状态信息来重启服务。它也可能会使用更早的 Savepoint 还原点来重启服务,以便于修复由于有缺陷的程序版本导致的不正确的程序运行结果。
  • 方便集群服务移植: 通过使用 Savepoint,流服务应用可以自由的在不同集群中迁移部署。
  • 方便Flink版本升级: 通过使用 Savepoint,可以使应用服务在升级Flink时,更加安全便捷。
  • 增加应用并行服务的扩展性: Savepoint 也常在增加或减少应用服务集群的并行度时使用。
  • 便于A/B测试及假设分析场景对比结果: 通过把同一应用在使用不同版本的应用程序,基于同一个 Savepoint 还原点启动服务时,可以测试对比2个或多个版本程序的性能及服务质量。
  • 暂停和恢复服务: 一个应用服务可以在新建一个 Savepoint 后再停止服务,以便于后面任何时间点再根据这个实时刷新的 Savepoint 还原点进行恢复服务。
  • 归档服务: Savepoint 还提供还原点的归档服务,以便于用户能够指定时间点的 Savepoint 的服务数据进行重置应用服务的状态,进行恢复服务。

3.监控和控制应用服务

如其它应用服务一样,持续运行的流应用服务也需要监控及集成到一些基础设施资源管理服务中,例如一个组件的监控服务及日志服务等。监控服务有助于预测问题并提前做出反应,日志服务提供日志记录能够帮助追踪、调查、分析故障发生的根本原因。最后,便捷易用的访问控制应用服务运行的接口也是Flink的一个重要的亮点特征。文章来源地址https://www.toymoban.com/news/detail-822056.html

  • Web UI方式: Flink提供了一个web UI来观察、监视和调试正在运行的应用服务。并且还可以执行或取消组件或任务的执行。
  • 日志集成服务:Flink实现了流行的slf4j日志接口,并与日志框架log4j或logback集成。
  • 指标服务: Flink提供了一个复杂的度量系统来收集和报告系统和用户定义的度量指标信息。度量信息可以导出到多个报表组件服务,包括 JMX, Ganglia, Graphite, Prometheus, StatsD, Datadog, 和 Slf4j.
  • 标准的WEB REST API接口服务: Flink提供多种REST API接口,有提交新应用程序、获取正在运行的应用程序的Savepoint服务信息、取消应用服务等接口。REST API还提供元数据信息和已采集的运行中或完成后的应用服务的指标信息。

到了这里,关于【极数系列】Flink 初相识(01)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 尚硅谷大数据Flink1.17实战教程-笔记01【Flink概述、Flink快速上手】

    尚硅谷大数据技术-教程-学习路线-笔记汇总表【课程资料下载】 视频地址:尚硅谷大数据Flink1.17实战教程从入门到精通_哔哩哔哩_bilibili 尚硅谷大数据Flink1.17实战教程-笔记01【Flink概述、Flink快速上手】 尚硅谷大数据Flink1.17实战教程-笔记02【Flink部署】 尚硅谷大数据Flink1.17实

    2024年02月09日
    浏览(45)
  • 【实战-01】flink cdc 实时数据同步利器

    cdc github源码地址 cdc官方文档 对很多初入门的人来说是无法理解cdc到底是什么个东西。 有这样一个需求,比如在mysql数据库中存在很多数据,但是公司要把mysql中的数据同步到数据仓库(starrocks), 数据仓库你可以理解为存储了各种各样来自不同数据库中表。 数据的同步目前对

    2023年04月08日
    浏览(51)
  • Flink与GoogleCloudBigtable:将数据存储在分布式列存储中

    作者:禅与计算机程序设计艺术 随着互联网和移动互联网的普及,海量的数据需要实时地被处理分析,而传统的关系型数据库已经无法满足需求。为了能够快速高效地对海量数据进行查询分析、数据采集、数据预处理等操作,分布式数据库应运而生。其中一种分布式数据库

    2024年02月12日
    浏览(37)
  • 数据存储和分布式计算的实际应用:如何使用Spark和Flink进行数据处理和分析

    作为一名人工智能专家,程序员和软件架构师,我经常涉及到数据处理和分析。在当前大数据和云计算的时代,分布式计算已经成为了一个重要的技术方向。Spark和Flink是当前比较流行的分布式计算框架,它们提供了强大的分布式计算和数据分析功能,为数据处理和分析提供了

    2024年02月16日
    浏览(58)
  • OceanBase X Flink 基于原生分布式数据库构建实时计算解决方案

    摘要:本文整理自 OceanBase 架构师周跃跃,在 Flink Forward Asia 2022 实时湖仓专场的分享。本篇内容主要分为四个部分: 分布式数据库 OceanBase 关键技术解读 生态对接以及典型应用场景 OceanBase X Flink 在游戏行业实践 未来展望 点击查看原文视频 演讲PPT 作为一款历经 12 年的纯自研

    2024年02月13日
    浏览(41)
  • 大数据系列——Flink理论

    Flink是一个对有界和无界数据流进行有状态计算的分布式处理引擎和框架,既可以处理有界的批量数据集,也可以处理无界的实时流数据,为批处理和流处理提供了统一编程模型,其代码主要由 Java 实现,部分代码由 Scala实现。 Flink以REST资源的形式和外部进行交互,所以可以

    2024年02月03日
    浏览(43)
  • 大数据:【学习笔记系列】 Flink 学习路线

    Apache Flink 是一种高效、可扩展的 实时流处理框架 ,它允许开发者以 实时方式处理连续的数据流 。学习 Flink 要求你具备一定的编程基础(尤其是 Java 或 Scala),同时对大数据处理的基本概念有所了解。下面是一个详细的 Flink 学习路线,包括各阶段的学习目标和推荐资源。

    2024年04月23日
    浏览(30)
  • 大数据:【学习笔记系列】Flink基础架构

    Apache Flink 是一个开源的流处理框架,用于处理 有界 和 无界 的 数据流 。Flink 设计用于 运行在所有常见的集群环境 中,并且能够以 高性能 和 可扩展 的方式进行实时数据处理和分析。下面将详细介绍 Flink 的基础架构组件和其工作原理。 1. Flink 架构概览 Flink 的架构主要包括

    2024年04月23日
    浏览(35)
  • [Flink01] 了解Flink

    Flink入门系列文章主要是为了给想学习Flink的你建立一个大体上的框架,助力快速上手Flink。学习Flink最有效的方式是先入门了解框架和概念,然后边写代码边实践,然后再把官网看一遍。 Flink入门分为四篇,第一篇是《了解Flink》,第二篇《架构和原理》,第三篇是《DataStre

    2024年02月19日
    浏览(32)
  • Flink系列之:使用Flink CDC从数据库采集数据,设置checkpoint支持数据采集中断恢复,保证数据不丢失

    博主相关技术博客: Flink系列之:Debezium采集Mysql数据库表数据到Kafka Topic,同步kafka topic数据到StarRocks数据库 Flink系列之:使用Flink Mysql CDC基于Flink SQL同步mysql数据到StarRocks数据库

    2024年02月11日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包