论文阅读《Generalizing Face Forgery Detection with High-frequency Features》

这篇具有很好参考价值的文章主要介绍了论文阅读《Generalizing Face Forgery Detection with High-frequency Features》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

高频噪声分析会过滤掉图像的颜色内容信息。

本文设计了三个模块来充分利用高频特征,

1.多尺度高频特征提取模块

2.双跨模态注意模块

3.残差引导空间注意模块(也在一定程度上体现了两个模态的交互)generalizing face forgery detection with high-frequency features,论文阅读

SRM是用于过滤图像的高频噪声

输入的图像X,共两个分支,一部分是用于输入到SRM获得高频特征Xh,一部分是RGB流,RGB的分支同样也会输入到SRM进行提取高频特征,其结果与已经输入SRM中的结果进行相加得到最后的输出结果,和,该过程经过不断地重复得到最后的特征F,和

第二个模块是DCMA,是跨模态的特征融合的部分,对于特征F来说,会先进行映射为Key 和value ,key用于计算两个模态的相似性,相似性结果再乘以权重矩阵得到系数C,再与Vh相乘得到特征T,对于T'的计算也是同样的道理,完成特征融合。

第三部分,将两个特征再通道维度上进行拼接,输入到全连接神经网络中,得到最后的分类结果。文章来源地址https://www.toymoban.com/news/detail-822105.html

到了这里,关于论文阅读《Generalizing Face Forgery Detection with High-frequency Features》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读《thanking frequency fordeepfake detection》

    项目链接:https://github.com/yyk-wew/F3Net 这篇论文从频域的角度出发,提出了频域感知模型用于deepfake检测的模型 整体架构图: 1.FAD: 频域感知分解,其实就是利用DCT变换,将空间域转换为频域,变换后的图像低频信息在左上角,高频信息在右下角,同时高频表示细粒度的伪造痕

    2024年02月20日
    浏览(42)
  • 《2023 HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face》阅读笔记

    借助大语言模型(LLMS)在语言理解生成推理等方面表现出的出色能力,考虑将其作为控制器来管理现有的各种AI模型, 把语言作为通用接口 。基于这一理念,提出了HuggingGPT框架,利用LLMS(ChatGPT)来连接机器学习社区(Hug face)中的各种AI模型,具体来说就是在接收用户请求

    2024年02月02日
    浏览(65)
  • [论文阅读]Multimodal Virtual Point 3D Detection

    多模态虚拟点3D检测 论文网址:MVP 论文代码:MVP 方法MVP方法的核心思想是将RGB图像中的2D检测结果转换为虚拟的3D点,并将这些虚拟点与原始的Lidar点云合并。具体步骤如下: (1) 使用2D检测器(如CenterNet)在RGB图像中检测物体。 (2) 将检测到的物体掩模投影到Lidar点云中,创建与

    2024年02月03日
    浏览(97)
  • 论文阅读笔记—— Multi-attentional Deepfake Detection

    来源:CVPR 2021 作者:Hanqing Zhao1 Wenbo Zhou1,† Dongdong Chen2 Tianyi Wei1 Weiming Zhang1,† Nenghai Yu1 单位:University of Science and Technology of China1 Microsoft Cloud AI2 邮箱:{zhq2015@mail, welbeckz@, bestwty@mail, zhangwm@, ynh@}.ustc.edu.cn cddlyf@gmail.com 论文原地址:Multi-attentional Deepfake Detection DF大多二分类 人

    2024年02月22日
    浏览(56)
  • Monocular 3D Object Detection with Depth from Motion 论文学习

    论文链接:Monocular 3D Object Detection with Depth from Motion 从单目输入感知 3D 目标对于自动驾驶非常重要,因为单目 3D 的成本要比多传感器的方案低许多。但单目方法很难取得令人满意的效果,因为单张图像并没有提供任何关于深度的信息,该方案实现起来非常困难。 Two view 场景

    2024年02月17日
    浏览(41)
  • 深度学习之边缘检测算法论文解读(EDTER: Edge Detection with Transformer)

    边缘检测是计算机视觉中最基本的问题之一,具有广泛的应用,例如图像分割、对象检测和视频对象分割。给定输入图像, 边缘检测旨在提取精确的对象边界和视觉上显著的边缘 。由于许多因素,包括复杂的背景、不一致的注释等等,这是具有挑战性的 边缘检测与图像的上

    2024年02月01日
    浏览(43)
  • 论文解读:BIT | Remote Sensing Image Change Detection with Transformers

    论文解读:BIT | Remote Sensing Image Change Detection with Transformers 论文地址:https://arxiv.org/pdf/2103.00208.pdf 项目地址:https://github.com/justchenhao/BIT_CD 现代变化检测(CD)凭借其强大的深度卷积识别能力取得了显著的成功。然而,由于场景中物体的复杂性,高分辨率遥感CD仍然具有挑战性

    2024年02月04日
    浏览(50)
  • End-to-End Object Detection with Transformers(论文解析)

    我们提出了一种将目标检测视为直接集合预测问题的新方法。我们的方法简化了检测流程,有效地消除了许多手工设计的组件的需求,如显式编码我们关于任务的先验知识的非极大值抑制过程或锚点生成。新框架的主要要素,称为DEtection TRansformer或DETR,包括一个基于集合的全

    2024年02月09日
    浏览(45)
  • [论文笔记] CLRerNet: Improving Confidence of Lane Detection with LaneIoU

    Honda, Hiroto, and Yusuke Uchida. “CLRerNet: Improving Confidence of Lane Detection with LaneIoU.” arXiv preprint arXiv:2305.08366 (2023). 2023.05 出的一篇车道线检测的文章, 效果在CULane, CurveLanes SOTA 这篇论文在CLRNet基础上, 使用提出的LaneIoU代替CLRNet论文中LineIoU, 在两个数据集上取得了SOTA效果 论文其他部

    2024年02月15日
    浏览(45)
  • 论文阅读《Rethinking Efficient Lane Detection via Curve Modeling》

    目录 Abstract 1. Introduction 2. Related Work 3. B´ezierLaneNet 3.1. Overview 3.2. Feature Flip Fusion 3.3. End-to-end Fit of a B´ezier Curve 4. Experiments 4.1. Datasets 4.2. Evalutaion Metics 4.3. Implementation Details 4.4. Comparisons 4.5. Analysis 4.6. Limitations and Discussions 5. Conclusions 图和表 图  表 附录 A. FPS Test Protocol B. Spec

    2024年02月03日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包