sklearn.cluster.Kmeans解析

这篇具有很好参考价值的文章主要介绍了sklearn.cluster.Kmeans解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

sklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,

        max_iter=300, tol=0.0001, precompute_distances='auto',verbose=0,

        random_state=None, copy_x=True,n_jobs=1,algorithm='auto')

n_clusters: 生成类别数, int, optional, default: 8.

init: 初始化方法, 默认为‘k-means++,可选{‘k-means++’, ‘random’ or an ndarray}.

n_init: ‘auto’ or int, default=’auto’ (When n_init='auto', the number of runs depends on the value of init: 10 if using init='random' or init is a callable; 1 if using init='k-means++' or init is an array-like).

max_iter: 最大循环次数, int, default: 300.

tol: 判断收敛参数, float, default: 1e-4.

precompute_distances: 预先计算距离并存储,可选{‘auto’, True, False},其中 ‘auto’:如果 n_samples * n_clusters > 12 million则不计算。

verbose:Verbosity模式, int, default 0

random_state: int, RandomState instance or None, optional, default: None (random number generator is the RandomState instance used by np.random)

copy_x: boolean, default True (the original data is not modified)

n_jobs: 设置parallel

algorithm : “auto”, “full”(classical EM-style) or “elkan”(triangle inequality), default=”auto”(chooses “elkan” for dense data and “full” for sparse data)

Examples:

from sklearn.cluster import KMeans

import numpy as np

X = np.array([[0, 0], [0, 2], [-1, 1], [1, 1],

                        [4, 0], [4, 2], [3, 1], [5, 1]])

kmeans = KMeans(n_clusters=2, random_state=0).fit(X)

print(kmeans.labels_)

# [1 1 1 1 0 0 0 0]

print(kmeans.predict([[0, -1], [4, 4]]))

# [1 0]

print(kmeans.cluster_centers_)

# [[4. 1.]

# [0. 1.]]文章来源地址https://www.toymoban.com/news/detail-822425.html

到了这里,关于sklearn.cluster.Kmeans解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能基础_机器学习003_有监督机器学习_sklearn中线性方程和正规方程的计算_使用sklearn解算八元一次方程---人工智能工作笔记0042

    然后我们再来看看,如何使用sklearn,来进行正规方程的运算,当然这里 首先要安装sklearn,这里如何安装sklearn就不说了,自己查一下 首先我们还是来计算前面的八元一次方程的解,但是这次我们不用np.linalg.solve这个 解线性方程的方式,也不用 直接 解正规方程的方式: 也就是上面这种

    2024年02月08日
    浏览(55)
  • 【人工智能】— 无监督学习、K-means聚类(K-means clustering)、K-means损失函数,目标函数

    无监督学习是指在没有标签的数据上进行学习,即没有监督信号的指导下进行模型训练。在无监督学习中,我们主要关注从无标签数据中学习出数据的低维结构和隐藏的模式。 通过无标签数据,我们可以预测以下内容: 低维结构:通过无监督学习算法如主成分分析(PCA),

    2024年02月10日
    浏览(44)
  • 聚类算法:Kmeans和Kmeans++算法精讲

    其实Kmeans聚类算法在YOLOv2(【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记))中我们就见到了,那时候只是简单地了解了一下。后来在这学期的数据挖掘课程的期末汇报中,我又抽中了这个算法,于是又重新学习了一遍。另外最近在看一些改进的论文,很多摘要中也都

    2024年02月05日
    浏览(43)
  • 人工智能:支持向量机SVM 练习题(带解析)

    1.对于线性可分的二分类任务样本集,将训练样本分开的超平面有很多,支持向量机试图寻找满足什么条件的超平面?(A) A.在正负类样本“正中间”的 B.靠近正类样本的 C.靠近负类样本的 D.以上说法都不对 解析 :从直观上来看,当所找到的超平面恰好位于正负类样本点“

    2024年02月06日
    浏览(48)
  • 美国智库发布《用人工智能展望网络未来》的解析

    美国智库阿斯彭研究所1月9日发布题为《用人工智能展望网络未来》的报告,从正反两个角度分析了人工智能未来可能改善和损害网络安全的方式,并提出引导人工智能助益网络安全的七项建议,以最大限度地提高潜在的网络安全效益并最大限度地减少网络安全风险。 现代人

    2024年01月20日
    浏览(62)
  • 探索语义解析技术和AI人工智能大模型的关系

    🌈 个人主页:  Aileen_0v0 🔥 热门专栏:  华为鸿蒙系统学习 | 计算机网络 | 数据结构与算法 💫 个人格言: \\\"没有罗马,那就自己创造罗马~\\\" 目录 语义解析 定义  作用 语义解析的应用场景 场景一: 场景二: 总结语义解析在实际应用中的优点 人机交互方面 数据库查询方面 语义

    2024年02月02日
    浏览(67)
  • 编织人工智能:机器学习发展历史与关键技术全解析

    关注TechLead,分享AI领域与云服务领域全维度开发技术。本文全面回顾了机器学习的发展历史,从早期的基本算法到当代的深度学习模型,再到未来的可解释AI和伦理考虑。文章深入探讨了各个时期的关键技术和理念,揭示了机器学习在不同领域的广泛应用和潜力。最后,总结

    2024年02月14日
    浏览(48)
  • 人工智能与IP代理池:解析网络数据采集的未来

    随着互联网的快速发展,数据成为了当今社会最宝贵的资源之一。然而,要获取大量的网络数据并进行有效的分析,往往需要面对诸多挑战,其中之一就是网络封锁与反爬虫机制。在这个背景下,人工智能(AI)技术和IP代理池成为了破解这些限制的重要工具。本文将深入探讨

    2024年04月17日
    浏览(36)
  • 概念解析 | 量子机器学习:将量子力学与人工智能的奇妙融合

    注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:量子机器学习。 量子增强机器学习:量子经典混合卷积神经网络 量子机器学习是量子计算和机器学习的结合,它利用量子力学的特性如叠加、纠缠和干涉来进行数据处

    2024年02月11日
    浏览(44)
  • 人工智能中数学基础:线性代数,解析几何和微积分

    在人工智能领域,线性代数、解析几何和微积分是最基础的数学知识。这些数学知识不仅在人工智能领域中被广泛应用,也是其他领域的重要基础。本文将介绍人工智能中的线性代数、解析几何和微积分的基础知识和应用。

    2024年02月16日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包