1. Matplotlib的Figure基础概念

这篇具有很好参考价值的文章主要介绍了1. Matplotlib的Figure基础概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Matplotlib是一个用于绘制二维图形的Python库,广泛应用于数据可视化领域。其灵活性和强大的功能使得用户能够轻松创建各种类型的图表,包括折线图、散点图、直方图、饼图等。Matplotlib的设计目标是使得用户能够轻松创建出版质量的图表,并能够在各种平台上实现高质量的图形输出。

而在Matplotlib中,Figure类是一个核心的概念,它扮演着控制整个图表外观的关键角色。

它是用于创建图表的顶级容器。它代表整个图形窗口,可以包含一个或多个坐标轴(Axes),文本元素、标签等。Figure是Matplotlib图形的最外层容器,提供了对整个图形的控制。

一 角色和作用

1 图形容器:
Figure充当了图形容器,可以包含一个或多个坐标轴(Axes),文本、标签和其他绘图元素。所有这些元素都在Figure的基础上组织,使得用户能够在单个图形中管理和控制多个子图。

2 控制图表的外观:
Figure对象的一个基本作用是控制整个图表的外观。用户可以通过设置Figure的属性来调整图形的大小、背景颜色、分辨率等。这使得用户能够根据需求自定义图表的整体样式。

3 多子图的支持:
Figure类允许用户在同一个图形中创建多个子图。这些子图可以使用add_subplot等方法添加到Figure上,从而实现在一个图形窗口中显示多个相关的图表。

4 保存图形:
用户可以使用Figure对象保存整个图形为图像文件,如PNG、PDF等格式。这对于生成高质量的图形并在报告、出版物中使用非常有用。

二 类比:

我们可以使用一个类比来解释Figure类的角色和作用。

如房屋建造,我们想象Figure类就像是一座房子,而图表则是这座房子的内部布局和装饰。这个类比可以帮助我们理解Figure在Matplotlib中的角色。

房屋(Figure):
房屋是整体的结构,就像Figure是整个图表的容器。房屋有固定的外观,比如外墙的颜色、房顶的形状,而Figure也有一些基本的外观属性,比如大小、背景颜色等。

房间(Axes):
在房屋中,有各种各样的房间,每个房间用于不同的目的。类似地,Figure中有坐标轴(Axes),它们是图表中实际进行绘图的区域。一个Figure可以包含一个或多个房间(坐标轴),而每个房间可以用于展示不同的图形。

装修和布局(图表的外观):
在房子内部,装修和布局决定了房间的美观和功能性。类似地,Figure的外观属性和布局决定了整个图表的外观,比如图表的大小、分辨率、背景颜色等。这就像在房子中选择墙纸、决定家具摆放位置一样。

整体保存和分享(保存图表):
当整座房子建好后,我们可能想要保存它,以便日后查看或分享给他人。在Matplotlib中,Figure对象的保存功能允许我们将整个图表保存为图像文件,以便在其他地方使用,就像我们保存整座房子的照片一样。

三 基本使用示例

以下是一个简单的示例,演示如何创建一个空的Figure:

import matplotlib.pyplot as plt

# 创建一个空的Figure对象
fig = plt.figure()

# 显示图表
plt.show()


运行结果如下:
1. Matplotlib的Figure基础概念,matplotlib,matplotlib
在代码中我们先通过plt.figure()创建了一个空的Figure对象。这个Figure对象是Matplotlib中顶级容器,可以包含一个或多个子图(Axes)。然后执行plt.show(),这一行代码的目的是显示图表。然而,由于在创建的Figure对象中没有包含任何子图或图形元素,因此显示的图表是空白的。

这就是相当于我们创建的空白画布figure,我们可以对这个空白画布进行修改。

如:

import matplotlib.pyplot as plt
# 创建Figure对象
fig = plt.figure()
# 添加一个子图
ax = fig.add_subplot(111)
# 在子图中绘制一条曲线
ax.plot([1, 2, 3, 4], [10, 15, 7, 25])
# 显示图形
plt.show()

运行代码结果如下:
1. Matplotlib的Figure基础概念,matplotlib,matplotlib
在这个例子中。我们使用add_subplot方法在Figure对象中添加一个子图。其中参数(111)表示创建一个1x1的子图网格,并使用第一个(唯一的)子图。返回的ax是一个Axes对象,它表示新创建的子图。
接着使用plot方法在子图中绘制一条曲线。这里绘制了一条以 x=[1, 2, 3, 4] 和 y=[10, 15, 7, 25] 为数据的曲线。
最后通过plt.show()显示图形。
所以通过Figure和子图的结合使用,用户能够创建和控制各种图形,实现高度的可定制性。文章来源地址https://www.toymoban.com/news/detail-822433.html

到了这里,关于1. Matplotlib的Figure基础概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【matplotlib基础】--结合地图

    如果分析的数据与地域相关,那么,把分析结果结合地图一起展示的话,会让可视化的效果得到极大的提升。 比如,分析各省GDP数据,人口数据,用柱状图,饼图之类的虽然都可以展示分析结果, 不过,如果能在全国的地图上展示各省的分析结果的话,会让人留下更加深刻

    2024年02月08日
    浏览(38)
  • 【matplotlib 基础】--目录(完结)

    Matplotlib 库是一个用于数据可视化和绘图的 Python 库。 它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 本系列具体内容包括: 画布 画布是其他所有的元素的载体,可以说是最重要,也是最容易

    2024年02月08日
    浏览(38)
  • Matplotlib绘图基础详细教程

    plt是最常用的接口 1.导入模块 2.创建画板,然后对画板进行调整 3.定义数据 4.绘制图形(包含坐标轴的设置,数据的导入,线条的样式,颜色,还有标题,图例,等等) 5.plt.show() . . . 1.1一步一步看 1.1.1**(一)第一步:创建并定义一个\\\"画板\\\"**(你将要在你定义的画板上面进行画图操作). 在 pl

    2023年04月15日
    浏览(38)
  • 【机器学习基础 2】matplotlib库

    目录 一、什么是matplotlib库 二、基本用法 1、绘制简单的线图  plot()函数: 2、绘制散点图 scatter()函数: 3、绘制条形图  bar()函数: 4、绘制饼图 pie()函数: 三、重要用法 1、设置样式 2、添加标签 3、设置坐标轴范围 4、绘制多个图表 5、绘制3D图表 四、注意点 五、在机器学

    2024年02月10日
    浏览(35)
  • 【Matplotlib】基础设置之图像处理05

    导入相应的包: 我们首先导入上面的图像,注意 matplotlib 默认只支持 PNG 格式的图像,我们可以使用 mpimg.imread 方法读入这幅图像: 这是一个 375 x 500 x 3 的 RGB 图像,并且每个像素使用 uint8 分别表示 RGB 三个通道的值。不过在处理的时候, matplotlib 将它们的值归一化到 0.0~1.

    2024年01月24日
    浏览(63)
  • python学习——Matplotlib数据可视化基础

    官方网站:https://matplotlib.org/ 百度前端:https://www.echartsjs.com/zh/index.html plotly:可视化工具:https://plot.ly/python/ matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建 实例1 实例2 子图 实例1 案例2 能够使用plt.hist方法的是那些没有统计过的数

    2024年02月10日
    浏览(44)
  • 大数据分析/机器学习基础之matplotlib绘图篇

    目录 一、前言 我的运行环境 二、什么是matplotlib? 三、安装及导入 四、matplotlib的使用 五、matplotlib中文乱码问题 本人因在学习基于python的机器学习相关教程时第一次接触到matplotlib相关方面的绘图知识,故写此笔记进行记录,如果能帮助到其他人欢迎点个赞👍表示支持 学习

    2024年02月05日
    浏览(41)
  • python库,科学计算与数据可视化基础,知识笔记(numpy+matplotlib)

    这篇主要讲一下数据处理中科学计算部分的知识。 之前有一篇pandas处理数据的。 讲一下这几个库的区别。 Pandas主要用来处理类表格数据(excel,csv),提供了计算接口,可用Numpy或其它方式进行计算。 NumPy 主要用来处理数值数据(尤其是矩阵,向量为核心的),本质上是纯

    2024年02月02日
    浏览(50)
  • 【Python数据科学快速入门系列 | 06】Matplotlib数据可视化基础入门(一)

    这是机器未来的第52篇文章 原文首发地址:https://robotsfutures.blog.csdn.net/article/details/126899226 【Python数据科学快速入门系列 | 01】Numpy初窥——基础概念 【Python数据科学快速入门系列 | 02】创建ndarray对象的十多种方法 【Python数据科学快速入门系列 | 03】玩转数据摘取:Numpy的索引

    2024年02月03日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包