Hotspot源码解析-第十七章-虚拟机万物创建(三)

这篇具有很好参考价值的文章主要介绍了Hotspot源码解析-第十七章-虚拟机万物创建(三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

17.4 Java堆空间内存分配

分配Java堆内存前,我们先通过两图来了解下C堆、Java堆、内核空间、native本地空间的关系。

1、从图17-1来看,Java堆的分配其实就是从Java进程运行时堆中选中一块内存区域来映射

2、从图17-2,可以看中各内存空间的关系,当然实际的内存区域比这个复杂的多,这里只是概括说明

图17-1
Hotspot源码解析-第十七章-虚拟机万物创建(三),Java虚拟机,开发语言,java

图17-2
Hotspot源码解析-第十七章-虚拟机万物创建(三),Java虚拟机,开发语言,java

17.4.1 genCollectedHeap.cpp

17.4.1.1 GenCollectedHeap::initialize
jint GenCollectedHeap::initialize() {
  // 这一步只是对c2编译器开通使用时,做一些参数赋值操作,这里就不展开讲
  CollectedHeap::pre_initialize();

  // 这里获取分代数_n_gens,就是2
  int i;
  _n_gens = gen_policy()->number_of_generations();

  // 保证2个值相等wordSize和HeapWordSize分别是在操作系统和Java堆中代表一个字word占用内存的大小,这两个值必然相同,否则出错
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  // Java堆的对齐值,这个在`章节17.2.1.1`中有介绍
  size_t gen_alignment = Generation::GenGrain;
 // 获取分代对象数组,这个在`章节17.2.1.1`中有介绍,数组元素就2个,索引0元素表示年轻代,索引1元素表示老年代
  _gen_specs = gen_policy()->generations();

  // 分别遍历新生代和老年代,并设置各自分代的空间大小(初始值和最大值),同时确保内存对齐
  for (i = 0; i < _n_gens; i++) {
    _gen_specs[i]->align(gen_alignment);
  }

  // 下面才是给Java堆分配空间

  char* heap_address;
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  ReservedSpace heap_rs;
  // 这是最外层Java堆的内存对齐值
  size_t heap_alignment = collector_policy()->heap_alignment();
  // 分配java堆内存,看`章节17.4.1.2`
  heap_address = allocate(heap_alignment, &total_reserved,
                          &n_covered_regions, &heap_rs);

  if (!heap_rs.is_reserved()) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }
  // 将分配的Java堆内存,用 MemRegion 内存区域对象管理起来
  _reserved = MemRegion((HeapWord*)heap_rs.base(),
                        (HeapWord*)(heap_rs.base() + heap_rs.size()));

  // 参数赋值
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base()); // Java堆内存的首地址
  size_t actual_heap_size = heap_rs.size(); // Java堆内存大小
    // Java堆内存的限制地址,也就是不能超过这条线
  _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size)); 
  // 接下来就是创建记忆集、卡表的过程,卡表和记忆集都是为了解决跨代引用的实现方案,后续讲GC时会有涉及
  _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
  set_barrier_set(rem_set()->bs());

  _gch = this;

  for (i = 0; i < _n_gens; i++) {
    ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
    _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
    heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
  }
  clear_incremental_collection_failed();

#if INCLUDE_ALL_GCS
  // If we are running CMS, create the collector responsible
  // for collecting the CMS generations.
  if (collector_policy()->is_concurrent_mark_sweep_policy()) {
    bool success = create_cms_collector();
    if (!success) return JNI_ENOMEM;
  }
#endif // INCLUDE_ALL_GCS

  return JNI_OK;
}
17.4.1.2 GenCollectedHeap::allocate
char* GenCollectedHeap::allocate(size_t alignment,
                                 size_t* _total_reserved,
                                 int* _n_covered_regions,
                                 ReservedSpace* heap_rs){
  const char overflow_msg[] = "The size of the object heap + VM data exceeds "
    "the maximum representable size";

  // Now figure out the total size.
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  const size_t pageSize = UseLargePages ?
      os::large_page_size() : os::vm_page_size();

  assert(alignment % pageSize == 0, "Must be");
  // 遍历_gen_specs,求得新生代和老年代的分配大小
  for (int i = 0; i < _n_gens; i++) {
    total_reserved += _gen_specs[i]->max_size();
    if (total_reserved < _gen_specs[i]->max_size()) {
      vm_exit_during_initialization(overflow_msg);
    }
    n_covered_regions += _gen_specs[i]->n_covered_regions();  // 最终为2
  }
  assert(total_reserved % alignment == 0,
         err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
                 SIZE_FORMAT, total_reserved, alignment));

  // Needed until the cardtable is fixed to have the right number
  // of covered regions.
  n_covered_regions += 2;  // 再加2,就是4,也就是把堆最终分成4个区(新生代、S1、S2、老年代)

  *_total_reserved = total_reserved;
  *_n_covered_regions = n_covered_regions;
  // 分配内存,实现细节看`章节17.4.2`
  *heap_rs = Universe::reserve_heap(total_reserved, alignment);
  return heap_rs->base();
}

17.4.2 universe.cpp

17.4.2.1 Universe::reserve_heap
ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
  assert(alignment <= Arguments::conservative_max_heap_alignment(),
      err_msg("actual alignment " SIZE_FORMAT " must be within maximum heap alignment " SIZE_FORMAT,
          alignment, Arguments::conservative_max_heap_alignment()));
  // 通过内存对齐,得到要分配的空间大小
  size_t total_reserved = align_size_up(heap_size, alignment);
  assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())),
      "heap size is too big for compressed oops");
  // 大页时考虑,本系列文章中不考虑大而情况,忽略
  bool use_large_pages = UseLargePages && is_size_aligned(alignment, os::large_page_size());
  assert(!UseLargePages
      || UseParallelGC
      || use_large_pages, "Wrong alignment to use large pages");
  // 取出Java堆的基址base的值,32位机器时,就是0,实现细节看`章节17.4.2.2`
  char* addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::UnscaledNarrowOop);
  // 创建一个ReservedHeapSpace对象,该对象就是用来保留连续内存地址范围空间的数据结构,实现细节看`章节17.4.3`
  ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);

  if (UseCompressedOops) {
    if (addr != NULL && !total_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::ZeroBasedNarrowOop);

      ReservedHeapSpace total_rs0(total_reserved, alignment,
          use_large_pages, addr);

      if (addr != NULL && !total_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");

        ReservedHeapSpace total_rs1(total_reserved, alignment,
            use_large_pages, addr);
        total_rs = total_rs1;
      } else {
        total_rs = total_rs0;
      }
    }
  }

  if (!total_rs.is_reserved()) {
    vm_exit_during_initialization(err_msg("Could not reserve enough space for " SIZE_FORMAT "KB object heap", total_reserved/K));
    return total_rs;
  }

  if (UseCompressedOops) {
    // Universe::initialize_heap() will reset this to NULL if unscaled
    // or zero-based narrow oops are actually used.
    address base = (address)(total_rs.base() - os::vm_page_size());
    Universe::set_narrow_oop_base(base);
  }
  // 返回total_rs
  return total_rs;
}
17.4.2.2 Universe::preferred_heap_base
char* Universe::preferred_heap_base(size_t heap_size, size_t alignment, NARROW_OOP_MODE mode) {
  assert(is_size_aligned((size_t)OopEncodingHeapMax, alignment), "Must be");
  assert(is_size_aligned((size_t)UnscaledOopHeapMax, alignment), "Must be");
  assert(is_size_aligned(heap_size, alignment), "Must be");

  // HeapBaseMinAddress 是操作系统明确设定的堆内存的最低地址限制,默认设置的是2*G,这里按alignment对齐,把HeapBaseMinAddress的值按alignment对齐后,作为堆内存的最低地址
  uintx heap_base_min_address_aligned = align_size_up(HeapBaseMinAddress, alignment);

  size_t base = 0;
#ifdef _LP64  // 下面是对64位机器及使用压缩指针时的实现,我们只讲32位的,这块逻辑略过
  if (UseCompressedOops) {
    assert(mode == UnscaledNarrowOop  ||
           mode == ZeroBasedNarrowOop ||
           mode == HeapBasedNarrowOop, "mode is invalid");
    const size_t total_size = heap_size + heap_base_min_address_aligned;
    // Return specified base for the first request.
    if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
      base = heap_base_min_address_aligned;

    // If the total size is small enough to allow UnscaledNarrowOop then
    // just use UnscaledNarrowOop.
    } else if ((total_size <= OopEncodingHeapMax) && (mode != HeapBasedNarrowOop)) {
      if ((total_size <= UnscaledOopHeapMax) && (mode == UnscaledNarrowOop) &&
          (Universe::narrow_oop_shift() == 0)) {
        // Use 32-bits oops without encoding and
        // place heap's top on the 4Gb boundary
        base = (UnscaledOopHeapMax - heap_size);
      } else {
        // Can't reserve with NarrowOopShift == 0
        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);

        if (mode == UnscaledNarrowOop ||
            mode == ZeroBasedNarrowOop && total_size <= UnscaledOopHeapMax) {

          // Use zero based compressed oops with encoding and
          // place heap's top on the 32Gb boundary in case
          // total_size > 4Gb or failed to reserve below 4Gb.
          uint64_t heap_top = OopEncodingHeapMax;

          // For small heaps, save some space for compressed class pointer
          // space so it can be decoded with no base.
          if (UseCompressedClassPointers && !UseSharedSpaces &&
              OopEncodingHeapMax <= 32*G) {

            uint64_t class_space = align_size_up(CompressedClassSpaceSize, alignment);
            assert(is_size_aligned((size_t)OopEncodingHeapMax-class_space,
                   alignment), "difference must be aligned too");
            uint64_t new_top = OopEncodingHeapMax-class_space;

            if (total_size <= new_top) {
              heap_top = new_top;
            }
          }

          // Align base to the adjusted top of the heap
          base = heap_top - heap_size;
        }
      }
    } else {
      // UnscaledNarrowOop encoding didn't work, and no base was found for ZeroBasedOops or
      // HeapBasedNarrowOop encoding was requested.  So, can't reserve below 32Gb.
      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
    }

    // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
    // used in ReservedHeapSpace() constructors.
    // The final values will be set in initialize_heap() below.
    if ((base != 0) && ((base + heap_size) <= OopEncodingHeapMax)) {
      // Use zero based compressed oops
      Universe::set_narrow_oop_base(NULL);
      // Don't need guard page for implicit checks in indexed
      // addressing mode with zero based Compressed Oops.
      Universe::set_narrow_oop_use_implicit_null_checks(true);
    } else {
      // Set to a non-NULL value so the ReservedSpace ctor computes
      // the correct no-access prefix.
      // The final value will be set in initialize_heap() below.
      Universe::set_narrow_oop_base((address)UnscaledOopHeapMax);
#if defined(_WIN64) || defined(AIX)
      if (UseLargePages) {
        // Cannot allocate guard pages for implicit checks in indexed
        // addressing mode when large pages are specified on windows.
        Universe::set_narrow_oop_use_implicit_null_checks(false);
      }
#endif //  _WIN64
    }
  }
#endif

  assert(is_ptr_aligned((char*)base, alignment), "Must be");
  // 最终返回base,在32位机器时,虚拟机就是返回0
  return (char*)base; // also return NULL (don't care) for 32-bit VM
}

17.4.3 virtualspace.cpp

17.4.3.1 ReservedHeapSpace::ReservedHeapSpace
ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
                                     bool large, char* requested_address) :
  /* 先调用父类构造函数
  */
  ReservedSpace(size, alignment, large,
                requested_address,
                (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
                 Universe::narrow_oop_use_implicit_null_checks()) ?
                  lcm(os::vm_page_size(), alignment) : 0) {
  if (base() != NULL) {
    MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
  }

  // Only reserved space for the java heap should have a noaccess_prefix
  // if using compressed oops.
  protect_noaccess_prefix(size);
}
17.4.3.2 ReservedSpace::ReservedSpace
ReservedSpace::ReservedSpace(size_t size, size_t alignment,
                             bool large,
                             char* requested_address,
                             const size_t noaccess_prefix) {
  initialize(size+noaccess_prefix, alignment, large, requested_address,
             noaccess_prefix, false);
}
17.4.3.3 ReservedSpace::initialize

入口函数: ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);

参数:

total_reserved 对应 size:空间大小

alignment 对应 alignment:内存对齐值

use_large_pages 对应 large:这里不考虑大页,就设置为false

addr 对应 requested_address:32位时,addr为0

noaccess_prefix 为 0

executable 为 false文章来源地址https://www.toymoban.com/news/detail-822515.html

void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
                               char* requested_address,
                               const size_t noaccess_prefix,
                               bool executable) {
  // 看源码得知,这里就是取page size(页大小),没什么逻辑
  const size_t granularity = os::vm_allocation_granularity();
  // 断言检验
  assert((size & (granularity - 1)) == 0,
         "size not aligned to os::vm_allocation_granularity()");
  assert((alignment & (granularity - 1)) == 0,
         "alignment not aligned to os::vm_allocation_granularity()");
  assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
         "not a power of 2");
  // 取二者最大值对齐
  alignment = MAX2(alignment, (size_t)os::vm_page_size());

  // Assert that if noaccess_prefix is used, it is the same as alignment.
  assert(noaccess_prefix == 0 ||
         noaccess_prefix == alignment, "noaccess prefix wrong");

  _base = NULL;
  _size = 0;
  _special = false;
  _executable = executable;
  _alignment = 0;
  _noaccess_prefix = 0;
  if (size == 0) {
    return;
  }

  // 不存在大页,special 为 false
  bool special = large && !os::can_commit_large_page_memory();
  char* base = NULL;
  // 32位机器时 requested_address == 0,这条线也不会走
  if (requested_address != 0) {
    requested_address -= noaccess_prefix; // adjust requested address
    assert(requested_address != NULL, "huge noaccess prefix?");
  }
  // special为false,这个if不会走
  if (special) {

    base = os::reserve_memory_special(size, alignment, requested_address, executable);

    if (base != NULL) {
      if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
        // OS ignored requested address. Try different address.
        return;
      }
      // Check alignment constraints.
      assert((uintptr_t) base % alignment == 0,
             err_msg("Large pages returned a non-aligned address, base: "
                 PTR_FORMAT " alignment: " PTR_FORMAT,
                 base, (void*)(uintptr_t)alignment));
      _special = true;
    } else {
      // failed; try to reserve regular memory below
      if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
                            !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
        if (PrintCompressedOopsMode) {
          tty->cr();
          tty->print_cr("Reserve regular memory without large pages.");
        }
      }
    }
  }

  if (base == NULL) {
    if (requested_address != 0) {
      base = os::attempt_reserve_memory_at(size, requested_address);
      if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
        // OS ignored requested address. Try different address.
        base = NULL;
      }
    } else {
      // 这一步就是通过系统调用mmap映射一块size大小的内存,Java堆内存就是mmap映射出来的
      base = os::reserve_memory(size, NULL, alignment);
    }
    // 映射失败,直接退出函数,分配Java堆内存失败
    if (base == NULL) return;

    // 验证对齐,为啥要验证呢,因为base是mmap映射后返回的内存首地址,这个地址是os自己的规则选取的一个地址,不一定能按照alignment对齐,所以这一定要验证
    if ((((size_t)base + noaccess_prefix) & (alignment - 1)) != 0) {
      // base没有对齐,只能释放刚才mmap映射的内存,然后重试
      if (!os::release_memory(base, size)) fatal("os::release_memory failed");
      // 确保对齐
      size = align_size_up(size, alignment);
      // 再次mmap映射内存,返回的base同样有上面一样的不对齐问题,所以这个函数中包含了手动对齐操作,细节看`章节17.4.3.4`
      base = os::reserve_memory_aligned(size, alignment);

      if (requested_address != 0 &&
          failed_to_reserve_as_requested(base, requested_address, size, false)) {
        // As a result of the alignment constraints, the allocated base differs
        // from the requested address. Return back to the caller who can
        // take remedial action (like try again without a requested address).
        assert(_base == NULL, "should be");
        return;
      }
    }
  }
  // Done
  _base = base;  // 最终拿到了Java堆的首地址
  _size = size;  // 最终拿到了Java堆的大小
  _alignment = alignment;  // 对齐值
  _noaccess_prefix = noaccess_prefix;  // 0

  // 断言判断
  assert(noaccess_prefix == 0 ||
         noaccess_prefix == _alignment, "noaccess prefix wrong");

  assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
         "area must be distinguisable from marks for mark-sweep");
  assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
         "area must be distinguisable from marks for mark-sweep");
}
17.4.3.4 os_posix.cpp->os::reserve_memory_aligned
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
      "Alignment must be a multiple of allocation granularity (page size)");
  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");

  size_t extra_size = size + alignment;
  assert(extra_size >= size, "overflow, size is too large to allow alignment");
  // mmap映射一块内存区域,返回首地址
  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);

  if (extra_base == NULL) {
    return NULL;
  }

  // 手动对齐
  char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);

  // [  |                                       |  ]
  // ^ extra_base
  //    ^ extra_base + begin_offset == aligned_base
  //     extra_base + begin_offset + size       ^
  //                       extra_base + extra_size ^
  // |<>| == begin_offset
  //                              end_offset == |<>|
  // 用对齐后的地址-mmap的首地址,得出与首地址的偏移值
  size_t begin_offset = aligned_base - extra_base;
  // 结束地址对齐后的偏移
  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
  // begin_offset > 0,表示确实有偏移,那就把extra_base到偏移的这部分释放掉,因为有新的首地址了
  if (begin_offset > 0) {
      os::release_memory(extra_base, begin_offset);
  }
  // end_offset > 0,表示确实有偏移,那就把end_offset偏移的这部分释放掉,因为有新的限制地址了
  if (end_offset > 0) {
      os::release_memory(extra_base + begin_offset + size, end_offset);
  }
  // 返回首地址
  return aligned_base;
}

到了这里,关于Hotspot源码解析-第十七章-虚拟机万物创建(三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《JavaSE-第十七章》之LinkedList

    前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页:KC老衲爱尼姑的博客主页 博主的github,平常所写代码皆在于此 刷题求职神器 共勉:talk is cheap, show me the code 作者是爪哇岛的新手,水平很有限,如果发现错误,一定要及时告知作者

    2024年02月13日
    浏览(44)
  • 第十七章 优先队列优化Dijkstra算法

    作者在这里建议,不太懂dijkstra算法的同学可以去看看作者对该算法的详细讲解以及通俗证明,这样大家就能够体会到原算法的缺陷。 传送门:第十六章 Dijkstra算法的讲解以及证明(与众不同的通俗证明) 我们的dijkstra算法会选出所有松弛后所得距离的最小值。而我们之前的

    2023年04月25日
    浏览(31)
  • 第十七章行为性模式—状态模式

    行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式: 类行为模式:采用继承机制来在类间分派行为 对象行为模式:

    2024年02月07日
    浏览(39)
  • ArduinoUNO实战-第十七章-火焰传感器

    Arduino火焰传感器(含代码) 火焰传感器与 Arduino 连接 检测到由火源报警 远红外火焰传感器可以用来探测火源或其它一些波长在700纳米~1000纳米范围内的热源,在机器人比赛中,远红外火焰探头起到非常重要的作用,它可以用作机器人的眼睛来寻找火源或足球。利用它可以制作

    2024年01月20日
    浏览(43)
  • 《TCP IP网络编程》第十七章

            select 复用方法由来已久,因此,利用该技术后,无论如何优化程序性能也无法同时介入上百个客户端。这种 select 方式并不适合以 web 服务器端开发为主流的现代开发环境 ,所以需要学习 Linux 环境下的 epoll。 基于 select 的 I/O 复用技术速度慢的原因:        

    2024年02月12日
    浏览(38)
  • 离散数学复习---第十七章 平面图【概念版】

    目录 17.1 平面图的基本概念 17.2  欧拉公式 17.3  平面图的判断 17.4  平面图的对偶图 定义17.1   如果能将无向图G画在平面上使得除顶点外处处无边相交,则称G为 可平面图 ,简称为 平面图 。画出的无边相交的图称为G的 平面嵌入 。无平面嵌入的图称为 非平面图 。 定理17.

    2024年02月05日
    浏览(38)
  • 第十七章 Unity 预制件prefab(下)

    本章节我们来讲解如何编辑预制体文件。这里介绍三种打开编辑预制件的方式。第一就是通过预制件的实例游戏对象的Inspector检视面板上面的预制件“打开”按钮。 第二就是在Project工程面板中选中预制件文件(Cube.prefab),然后在Inspector检视面板中点击“打开预制件”。 第

    2024年02月04日
    浏览(28)
  • 《微服务实战》 第十七章 Redis下载与安装

    第二十八章 分布式锁框架-Redisson 第二十四章 Spring boot 操作 Redis 第二十三章 Redis RDB AOF 第二十一、二十二章 Redis发布订阅、事务;HyperLoglog基数统计 第二十章 Redis连接指令 客户端指令 服务器指令 第十九章 Redis key 第十八章 Redis查看配置文件和数据类型 第十七章 Redis下载与安

    2024年02月06日
    浏览(37)
  • 【新版系统架构】第十七章-通信系统架构设计理论与实践

    软考-系统架构设计师知识点提炼-系统架构设计师教程(第2版) 第一章-绪论 第二章-计算机系统基础知识(一) 第二章-计算机系统基础知识(二) 第三章-信息系统基础知识 第四章-信息安全技术基础知识 第五章-软件工程基础知识(一) 第五章-软件工程基础知识(需求工

    2024年02月15日
    浏览(45)
  • 【Rust】Rust学习 第十七章Rust 的面向对象特性

    面向对象编程(Object-Oriented Programming,OOP)是一种模式化编程方式。对象(Object)来源于 20 世纪 60 年代的 Simula 编程语言。这些对象影响了 Alan Kay 的编程架构中对象之间的消息传递。他在 1967 年创造了  面向对象编程  这个术语来描述这种架构。关于 OOP 是什么有很多相互矛

    2024年02月11日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包