transdata笔记:手机数据处理

这篇具有很好参考价值的文章主要介绍了transdata笔记:手机数据处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 mobile_stay_duration 每个停留点白天和夜间的持续时间

transbigdata.mobile_stay_duration(
    staydata, 
    col=['stime', 'etime'], 
    start_hour=8, 
    end_hour=20)

1.1 主要参数

staydata 停留数据(每一行是一条数据)
col   列名,顺序为[‘starttime’,’endtime’]
start_hour 白天的开始时间
end_hour 白天的结束时间

 1.2 返回内容

duration_night   一个panda的Series,表示夜间持续时间
duration_day  一个panda的Series,表示白天持续时间

1.3 举例

import pandas as pd
from transbigdata import mobile_stay_duration

# 示例数据
data = {
    'stime': ['2024-01-01 07:00', '2024-01-01 22:00', '2024-01-02 11:00', '2024-01-02 03:00'],
    'etime': ['2024-01-01 10:00', '2024-01-02 02:00', '2024-01-02 15:00', '2024-01-02 05:00']
}
staydata = pd.DataFrame(data)
staydata['stime'] = pd.to_datetime(staydata['stime'])
staydata['etime'] = pd.to_datetime(staydata['etime'])
staydata

transdata笔记:手机数据处理,python库整理,笔记

每一行表示在一个staypoint的开始-结束时间

result = mobile_stay_duration(staydata, col=['stime', 'etime'], start_hour=8, end_hour=20)
result
'''
(0     3600.0
 1    14400.0
 2        0.0
 3     7200.0
 dtype: float64,
 0     7200.0
 1        0.0
 2    14400.0
 3        0.0
 dtype: float64)
'''

两个pandas.Series,分别表示夜间/白天持续时间

2 mobile_identify_work 识别工作地点

transbigdata.mobile_identify_work(
    staydata, 
    col=['uid', 'stime', 'etime', 'LONCOL', 'LATCOL'], 
    minhour=3, 
    start_hour=8, 
    end_hour=20, 
    workdaystart=0, 
    workdayend=4)

从手机停留数据中识别工作地点。规则是确定工作日白天持续时间最长的位置(平均持续时间应超过“minhour”)

2.1 参数

staydata 停留数据
col

列名,按 [‘uid’、stime’、’etime’、’locationtag1’、’locationtag2’, …] 的顺序排列。

可以有多个“locationtag”列来指定位置

minhour 工作日的最短持续时间(小时)
workdaystart 一周中工作日的开始(0表示周一)
workdayend  一周中工作日的结束
start_hour 工作一天的开始时间
end_hout 工作一天的结束时间

2.2 举例

import pandas as pd
from transbigdata import mobile_identify_work

# 示例数据
data = {
    'uid': [1, 1, 1, 2, 2],
    'stime': ['2024-01-01 09:00', '2024-01-02 09:30', '2024-01-03 08:45', '2024-01-06 09:15', '2024-01-07 09:45'],
    'etime': ['2024-01-01 17:00', '2024-01-02 16:30', '2024-01-03 18:00', '2024-01-06 17:15', '2024-01-07 16:45'],
    'LONCOL': [116.38, 116.39, 116.38, 116.40, 116.40],
    'LATCOL': [39.90, 39.91, 39.90, 39.92, 39.92]
}
staydata = pd.DataFrame(data)
staydata['stime'] = pd.to_datetime(staydata['stime'])
staydata['etime'] = pd.to_datetime(staydata['etime'])
staydata

 transdata笔记:手机数据处理,python库整理,笔记

work_locations = mobile_identify_work(
    staydata, 
    col=['uid', 'stime', 'etime', 'LONCOL', 'LATCOL'], 
    minhour=3, 
    start_hour=8, 
    end_hour=20, 
    workdaystart=0, 
    workdayend=4
)
work_locations

 transdata笔记:手机数据处理,python库整理,笔记

对于uid=2,他的两个停留记录(1月6日 & 1月7日是周六周日,不是工作日,所以不记录用户2的工作位置)

3 mobile_identify_home 识别居住地位置

从手机停留数据中识别居住地位置。规则是确定夜间持续时间最长的位置

staydata 停留数据
col

列名,按 [‘uid’, ‘stime’, ‘etime’, ‘locationtag1’, ‘locationtag2’, …] 的顺序排列。

可以有多个“位置标签”列来指定位置

start_hour  白天时间的开始时间
end_hour 白天时间的结束时间

3.1 举例

import pandas as pd
from transbigdata import mobile_identify_home

# 示例数据
data = {
    'uid': [1, 1, 2, 2],
    'stime': ['2024-01-01 22:00', '2024-01-02 23:00', '2024-01-01 22:30', '2024-01-02 21:00'],
    'etime': ['2024-01-02 06:00', '2024-01-03 07:00', '2024-01-02 05:30', '2024-01-03 06:00'],
    'LONCOL': [116.38, 116.39, 116.40, 116.41],
    'LATCOL': [39.90, 39.91, 39.92, 39.93]
}
staydata = pd.DataFrame(data)
staydata['stime'] = pd.to_datetime(staydata['stime'])
staydata['etime'] = pd.to_datetime(staydata['etime'])
staydata

transdata笔记:手机数据处理,python库整理,笔记

home_locations = mobile_identify_home(staydata, 
                                      col=['uid', 'stime', 'etime', 'LONCOL', 'LATCOL'], 
                                      start_hour=8, 
                                      end_hour=20)
home_locations

transdata笔记:手机数据处理,python库整理,笔记文章来源地址https://www.toymoban.com/news/detail-823003.html

到了这里,关于transdata笔记:手机数据处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据预处理方法整理(数学建模)

    这篇文章主要是整理了一些作者在各种建模比赛中遇到的数据预处理问题以及方法,主要针对excel或csv格式的数据,为后续进行机器学习或深度学习做前期准备 导入库和文件,这里使用的是绝对路径,可改为相对路径 传入的为csv格式的文件,如果是xlsx格式的文件,建议先使

    2024年02月14日
    浏览(54)
  • sparkSql数据离线处理--整理记录

    前言:本文作为本人学习sparkSql离线数据抽取,离线数据处理的学习整理记录,文中参考博客均附上原文链接。 1、配置文件准备: /opt/hive/conf/ hive-site.xml :(2021/12/31修改,添加了useSSL=falseuseUnicode=truecharacterEncoding=utf8支持中文编码) 若要在idea环境下运行要把 hdfs-site.xml core-site

    2023年04月09日
    浏览(42)
  • excel数据的编排与整理——行列的批量处理

    1.1 插入连续行 1.1.0 题目内容 1.1.1 选中插入的位置➡按住shift键➡往下选中2行 1.1.2 鼠标右击➡点击插入 1.1.3 插入后的效果 1.2 插入不连续行 1.2.0 题目内容 1.2.1 按下ctrl键➡选中插入的位置,需要插入多行时,需要按下shift键➡再往下选中1行 1.2.2 鼠标右击➡点击插入 1.2.3 插入后

    2024年02月10日
    浏览(39)
  • 图像处理及深度学习开源数据集大全(四万字呕心沥血整理)

    本文整理了150 余个深度学习和图像处理领域的开源数据集,包括:目标检测、人脸识别、文本识别、图像分类、缺陷检测、医学影像、图像分割、图像去雾、关键点检测、动作识别、姿态估计、自动驾驶、RGBT共13个方向。 T-LESS数据集 类型:目标检测 数量:39000 数据集下载地

    2024年02月03日
    浏览(71)
  • 学习笔记3 | 高维数据处理——Xarray

    一、数据结构 1.DataArray (1)DataArray的创建 (2)DataArray的属性及常用方法 2.DataSet (1)DataSet的创建 (2)DataSet的属性和常用方法 二、数据的读取 1.读取nc文件 2.读取grib文件 3.读取多个文件并 合并 三、数据的索引 1.通过位置索引 2.通过名字索引 四、数据的坐标系统 1.修改坐

    2024年02月13日
    浏览(48)
  • 基于C#和MATLAB对手机录音音频数据分析处理系统 毕业论文+项目源码

    摘要 当今科学技术发展迅猛,知识爆炸信息量的急剧增加不仅仅丰富了我们的现实生活,也对我们的信息处理技术提出了新的要求。音频信号在这信息洪流中占据着不可或缺的重要地位,诸如语音聊天,音频取证等在我们的生活中发挥着愈来愈重要的作用,故而对于音频的特

    2024年01月19日
    浏览(44)
  • 比赛准备笔记 --- TensotFlow、软件调试、数据预处理(图像,csv数据)

    TensorFlow是由Google团队开发的一个开源深度学习框架,完全基于Python语言设计。它的初衷是以最简单的方式实现机器学习和深度学习的概念,结合了计算代数的优化技术,使计算许多数学表达式变得简单。 优势: 强大的计算能力,支持多种硬件和分布式计算 灵活的数据流模型

    2024年02月06日
    浏览(55)
  • 【数据集处理】基于Python处理EAR5数据

    ERA5是ECMWF(欧洲中期天气预报中心)对1950年1月至今全球气候的第五代大气再分析数据集。 包含了四个 基本变量(日平均温度、降水、比湿度和距离地表2米的气压) ,这些变量在每日时间尺度上覆盖全球,从而可以对不同地区和时间段进行全面和统一的分析 时间分辨率:194

    2024年02月05日
    浏览(55)
  • Python:PDF文件处理(数据处理)

    工作中有对PDF文件进行数据抽取,现在总结归纳一下相应的方法,本文包括一下内容: PDF文件分割、拼接; PDF文件抽取图片,简单的图片识别; PDF文件抽取表格; PDF文件抽取文本; PDF文件转docx文件; docx文件数据抽取; 目的:尽可能的将pdf中的数据,抽取出来,尤其是文

    2024年02月09日
    浏览(81)
  • Spark大数据处理讲课笔记4.1 Spark SQL概述、数据帧与数据集

      目录 零、本讲学习目标 一、Spark SQL (一)Spark SQL概述 (二)Spark SQL功能 (三)Spark SQL结构 1、Spark SQL架构图 2、Spark SQL三大过程 3、Spark SQL内部五大组件 (四)Spark SQL工作流程 (五)Spark SQL主要特点 1、将SQL查询与Spark应用程序无缝组合 2、Spark SQL以相同方式连接多种数据

    2024年02月09日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包