本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:.
食用方法
求解逻辑:速度与加速度都是在知道角速度与角加速度的前提下——旋转运动更重要
所求得的速度表达-需要考虑是否为刚体相对固定点!
旋转矩阵?转换矩阵?有什么意义和性质?——与角速度与角加速度的关系务必自己推导全部公式,并理解每个符号的含义
5. 运动刚体的加速度与角加速度
5.1 矢量的速度与加速度
矢量的速度与加速度,不同于点的速度与加速度——描述该矢量在对应方向上的延长与收缩情况(模值的变大与减小):
对于矢量的速度而言,有:
R
⃗
V
e
c
t
o
r
F
=
[
Q
M
F
]
R
⃗
V
e
c
t
o
r
M
⇒
R
⃗
˙
V
e
c
t
o
r
F
=
[
Q
˙
M
F
]
R
⃗
V
e
c
t
o
r
M
+
[
Q
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
=
[
Q
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
+
ω
⃗
~
F
[
Q
M
F
]
R
⃗
V
e
c
t
o
r
M
\vec{R}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} \\ \Rightarrow \dot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}=\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}
RVectorF=[QMF]RVectorM⇒R˙VectorF=[Q˙MF]RVectorM+[QMF]R˙VectorM=[QMF]R˙VectorM+ω~F[QMF]RVectorM
对于矢量的加速度而言,有:
R
⃗
˙
V
e
c
t
o
r
F
=
[
Q
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
+
ω
⃗
~
F
[
Q
M
F
]
R
⃗
V
e
c
t
o
r
M
⇒
R
⃗
¨
V
e
c
t
o
r
F
=
[
Q
˙
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
+
[
Q
M
F
]
R
⃗
¨
V
e
c
t
o
r
M
+
ω
⃗
~
˙
F
[
Q
M
F
]
R
⃗
V
e
c
t
o
r
M
+
ω
⃗
~
F
[
Q
˙
M
F
]
R
⃗
V
e
c
t
o
r
M
+
ω
⃗
~
F
[
Q
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
⇒
R
⃗
¨
V
e
c
t
o
r
F
=
ω
⃗
~
F
[
Q
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
+
[
Q
M
F
]
R
⃗
¨
V
e
c
t
o
r
M
+
ω
⃗
~
˙
F
[
Q
M
F
]
R
⃗
V
e
c
t
o
r
M
+
ω
⃗
~
F
ω
⃗
~
˙
F
[
Q
M
F
]
R
⃗
V
e
c
t
o
r
M
+
ω
⃗
~
F
[
Q
M
F
]
R
⃗
˙
V
e
c
t
o
r
M
⇒
R
⃗
¨
V
e
c
t
o
r
F
=
a
⃗
V
e
c
t
o
r
F
+
2
ω
⃗
~
F
v
⃗
V
e
c
t
o
r
F
+
ω
⃗
~
˙
F
R
⃗
V
e
c
t
o
r
F
+
ω
⃗
~
F
ω
⃗
~
F
R
⃗
V
e
c
t
o
r
F
\dot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M}+\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M}+\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\vec{a}_{\mathrm{Vector}}^{F}+2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}+\dot{\tilde{\vec{\omega}}}^F\vec{R}_{\mathrm{Vector}}^{F}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F}
R˙VectorF=[QMF]R˙VectorM+ω~F[QMF]RVectorM⇒R¨VectorF=[Q˙MF]R˙VectorM+[QMF]R¨VectorM+ω~˙F[QMF]RVectorM+ω~F[Q˙MF]RVectorM+ω~F[QMF]R˙VectorM⇒R¨VectorF=ω~F[QMF]R˙VectorM+[QMF]R¨VectorM+ω~˙F[QMF]RVectorM+ω~Fω~˙F[QMF]RVectorM+ω~F[QMF]R˙VectorM⇒R¨VectorF=aVectorF+2ω~FvVectorF+ω~˙FRVectorF+ω~Fω~FRVectorF
整理可得:
R
⃗
¨
V
e
c
t
o
r
F
=
a
⃗
V
e
c
t
o
r
F
+
2
ω
⃗
~
F
v
⃗
V
e
c
t
o
r
F
+
α
⃗
~
F
R
⃗
V
e
c
t
o
r
F
+
ω
⃗
~
F
ω
⃗
~
F
R
⃗
V
e
c
t
o
r
F
\ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\vec{a}_{\mathrm{Vector}}^{F}+2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}+\tilde{\vec{\alpha}}^F\vec{R}_{\mathrm{Vector}}^{F}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F}
R¨VectorF=aVectorF+2ω~FvVectorF+α~FRVectorF+ω~Fω~FRVectorF
其中:
- a ⃗ V e c t o r F = [ Q M F ] R ⃗ ¨ V e c t o r M \vec{a}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M} aVectorF=[QMF]R¨VectorM
运动坐标系下的矢量加速度
:表示坐标系 { F } \left\{ F \right\} {F}下定义的坐标系 { M } \left\{ M \right\} {M}的矢量加速度,若矢量的模固定(不发生变化),即在坐标系 { M } \left\{ M \right\} {M}中具有固定的投影参数,则该项为 0 0 0。- 2 ω ⃗ ~ F v ⃗ V e c t o r F = 2 ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M 2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}=2\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} 2ω~FvVectorF=2ω~F[QMF]R˙VectorM:
科里奥利分量
:其方向同时垂直于 ω ⃗ F \vec{\omega}^F ωF与 v ⃗ V e c t o r F \vec{v}_{\mathrm{Vector}}^{F} vVectorF- α ⃗ ~ F R ⃗ V e c t o r F = ω ⃗ ~ ˙ F R ⃗ V e c t o r F \tilde{\vec{\alpha}}^F\vec{R}_{\mathrm{Vector}}^{F}=\dot{\tilde{\vec{\omega}}}^F\vec{R}_{\mathrm{Vector}}^{F} α~FRVectorF=ω~˙FRVectorF
切向分量
:其方向同时垂直于 α ⃗ F \vec{\alpha}^F αF与 R ⃗ V e c t o r F \vec{R}_{\mathrm{Vector}}^{F} RVectorF- ω ⃗ ~ F ω ⃗ ~ F R ⃗ V e c t o r F \tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F} ω~Fω~FRVectorF
法向分量
:其方向为 − R ⃗ V e c t o r F -\vec{R}_{\mathrm{Vector}}^{F} −RVectorF
5.2 点的速度与加速度
对
v
⃗
P
i
M
=
(
ω
⃗
~
M
−
[
Q
M
F
]
T
[
Q
˙
M
F
]
)
R
⃗
P
i
M
\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \tilde{\vec{\omega}}^M-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}
vPiM=(ω~M−[QMF]T[Q˙MF])RPiM 进一步求导,可计算出其运动刚体上点
P
i
P_i
Pi的加速度为:
v
⃗
P
i
F
=
v
⃗
M
F
+
[
Q
˙
M
F
]
R
⃗
P
i
M
+
[
Q
M
F
]
R
⃗
˙
P
i
M
=
{
v
⃗
M
F
+
ω
⃗
~
F
[
Q
M
F
]
R
⃗
P
i
M
+
[
Q
M
F
]
v
⃗
P
i
M
v
⃗
M
F
+
[
Q
M
F
]
ω
⃗
~
M
R
⃗
P
i
M
+
[
Q
M
F
]
v
⃗
P
i
M
\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{v}_{\mathrm{M}}^{F}+\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}=\begin{cases} \vec{v}_{\mathrm{M}}^{F}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}\\ \vec{v}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}\\ \end{cases}
vPiF=vMF+[Q˙MF]RPiM+[QMF]R˙PiM={vMF+ω~F[QMF]RPiM+[QMF]vPiMvMF+[QMF]ω~MRPiM+[QMF]vPiM
- 坐标系
{
F
}
\left\{ F \right\}
{F}下的推导:
a ⃗ P i F = a ⃗ M F + ( ω ⃗ ~ ˙ F [ Q M F ] R ⃗ P i M + ω ⃗ ~ F [ Q ˙ M F ] R ⃗ P i M + ω ⃗ ~ F [ Q M F ] v ⃗ P i M ) + ( [ Q ˙ M F ] v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + ( α ⃗ ~ F [ Q M F ] R ⃗ P i M + ω ⃗ ~ F ω ⃗ ~ F [ Q M F ] R ⃗ P i M + ω ⃗ ~ F [ Q M F ] v ⃗ P i M ) + ( ω ⃗ ~ F [ Q M F ] v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + α ⃗ ~ F ( R ⃗ P i M ) F + ω ⃗ ~ F ω ⃗ ~ F ( R ⃗ P i M ) F + 2 ω ⃗ ~ F ( v ⃗ P i M ) F + ( a ⃗ P i M ) F \begin{aligned} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \tilde{\vec{\alpha}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\left( \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F\\ \end{aligned} aPiF⇒aPiF⇒aPiF=aMF+(ω~˙F[QMF]RPiM+ω~F[Q˙MF]RPiM+ω~F[QMF]vPiM)+([Q˙MF]vPiM+[QMF]aPiM)=aMF+(α~F[QMF]RPiM+ω~Fω~F[QMF]RPiM+ω~F[QMF]vPiM)+(ω~F[QMF]vPiM+[QMF]aPiM)=aMF+α~F(RPiM)F+ω~Fω~F(RPiM)F+2ω~F(vPiM)F+(aPiM)F
当点 P i P_i Pi为运动刚体上固定一点时,则有:
a ⃗ P i F = a ⃗ M F + α ⃗ ~ F ( R ⃗ P i M ) F + ω ⃗ ~ F ω ⃗ ~ F ( R ⃗ P i M ) F + 2 ω ⃗ ~ F ( v ⃗ P i M ↗ 0 ) F + ( a ⃗ P i M ↗ 0 ) F = a ⃗ M F + α ⃗ ~ F ( R ⃗ P i M ) F + ω ⃗ ~ F ω ⃗ ~ F ( R ⃗ P i M ) F \begin{split} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( {\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F+\left( {\vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F \\ &=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F \end{split} aPiF=aMF+α~F(RPiM)F+ω~Fω~F(RPiM)F+2ω~F(vPiM↗0)F+(aPiM↗0)F=aMF+α~F(RPiM)F+ω~Fω~F(RPiM)F - 坐标系
{
M
}
\left\{ M \right\}
{M}下的推导:
a ⃗ P i F = a ⃗ M F + ( [ Q ˙ M F ] ω ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ ˙ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M R ⃗ ˙ P i M ) + ( [ Q ˙ M F ] v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + ( [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M v ⃗ P i M ) + ( [ Q M F ] ω ⃗ ~ M v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M + 2 [ Q M F ] ω ⃗ ~ M v ⃗ P i M + ( a ⃗ P i M ) F \begin{aligned} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\tilde{\vec{\omega}}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+2\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left( \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F\\ \end{aligned} aPiF⇒aPiF⇒aPiF=aMF+([Q˙MF]ω~MRPiM+[QMF]ω~˙MRPiM+[QMF]ω~MR˙PiM)+([Q˙MF]vPiM+[QMF]aPiM)=aMF+([QMF]ω~Mω~MRPiM+[QMF]α~MRPiM+[QMF]ω~MvPiM)+([QMF]ω~MvPiM+[QMF]aPiM)=aMF+[QMF]α~MRPiM+[QMF]ω~Mω~MRPiM+2[QMF]ω~MvPiM+(aPiM)F
当点 P i P_i Pi为运动刚体上固定一点时,则有:
a ⃗ P i F = a ⃗ M F + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M + 2 [ Q M F ] ω ⃗ ~ M v ⃗ P i M ↗ 0 + ( a ⃗ P i M ↗ 0 ) F = a ⃗ M F + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M \begin{aligned} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+2\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M{\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0}+\left( {\vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F\\ &=\vec{a}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\\ \end{aligned} aPiF=aMF+[QMF]α~MRPiM+[QMF]ω~Mω~MRPiM+2[QMF]ω~MvPiM↗0+(aPiM↗0)F=aMF+[QMF]α~MRPiM+[QMF]ω~Mω~MRPiM
5.2.1 欧拉角表示角加速度
对
ω
⃗
F
=
[
cos
β
cos
γ
−
sin
γ
0
cos
β
sin
γ
cos
γ
0
−
sin
β
0
1
]
[
α
˙
β
˙
γ
˙
]
\vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right]
ωF=
cosβcosγcosβsinγ−sinβ−sinγcosγ0001
α˙β˙γ˙
继续求导,可得:
ω
⃗
F
=
[
cos
β
cos
γ
−
sin
γ
0
cos
β
sin
γ
cos
γ
0
−
sin
β
0
1
]
[
α
˙
β
˙
γ
˙
]
⇒
α
⃗
F
=
[
−
sin
β
cos
γ
−
cos
β
sin
γ
−
cos
γ
0
cos
β
cos
γ
−
sin
β
sin
γ
−
sin
γ
0
−
cos
β
0
0
]
[
α
˙
β
˙
γ
˙
]
+
[
cos
β
cos
γ
−
sin
γ
0
cos
β
sin
γ
cos
γ
0
−
sin
β
0
1
]
[
α
¨
β
¨
γ
¨
]
\begin{split} \vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] \\ \Rightarrow \vec{\alpha}^F=\left[ \begin{matrix} -\sin \beta \cos \gamma -\cos \beta \sin \gamma& -\cos \gamma& 0\\ \cos \beta \cos \gamma -\sin \beta \sin \gamma& -\sin \gamma& 0\\ -\cos \beta& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] +\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \ddot{\alpha}\\ \ddot{\beta}\\ \ddot{\gamma}\\ \end{array} \right] \end{split}
ωF=
cosβcosγcosβsinγ−sinβ−sinγcosγ0001
α˙β˙γ˙
⇒αF=
−sinβcosγ−cosβsinγcosβcosγ−sinβsinγ−cosβ−cosγ−sinγ0000
α˙β˙γ˙
+
cosβcosγcosβsinγ−sinβ−sinγcosγ0001
α¨β¨γ¨
5.2.2 欧拉参数表示角加速度
结合欧拉参数对角速度的表达:
[
w
1
F
w
2
F
w
3
F
]
=
2
[
q
˙
4
q
3
−
q
˙
3
q
4
+
q
˙
2
q
1
−
q
˙
1
q
2
q
˙
2
q
4
−
q
˙
1
q
3
+
q
˙
4
q
2
−
q
˙
3
q
1
q
˙
3
q
2
−
q
˙
4
q
1
+
q
˙
1
q
4
−
q
˙
2
q
3
]
\left[ \begin{array}{c} {w_1}^F\\ {w_2}^F\\ {w_3}^F\\ \end{array} \right] =2\left[ \begin{array}{c} \dot{q}_4q_3-\dot{q}_3q_4+\dot{q}_2q_1-\dot{q}_1q_2\\ \dot{q}_2q_4-\dot{q}_1q_3+\dot{q}_4q_2-\dot{q}_3q_1\\ \dot{q}_3q_2-\dot{q}_4q_1+\dot{q}_1q_4-\dot{q}_2q_3\\ \end{array} \right]
w1Fw2Fw3F
=2
q˙4q3−q˙3q4+q˙2q1−q˙1q2q˙2q4−q˙1q3+q˙4q2−q˙3q1q˙3q2−q˙4q1+q˙1q4−q˙2q3
对上式进一步求导,可得:
[
α
1
F
α
2
F
α
3
F
]
=
2
[
q
¨
4
q
3
−
q
¨
3
q
4
+
q
¨
2
q
1
−
q
¨
1
q
2
q
¨
2
q
4
−
q
¨
1
q
3
+
q
¨
4
q
2
−
q
¨
3
q
1
q
¨
3
q
2
−
q
¨
4
q
1
+
q
¨
1
q
4
−
q
¨
2
q
3
]
\left[ \begin{array}{c} {\alpha _1}^F\\ {\alpha _2}^F\\ {\alpha _3}^F\\ \end{array} \right] =2\left[ \begin{array}{c} \ddot{q}_4q_3-\ddot{q}_3q_4+\ddot{q}_2q_1-\ddot{q}_1q_2\\ \ddot{q}_2q_4-\ddot{q}_1q_3+\ddot{q}_4q_2-\ddot{q}_3q_1\\ \ddot{q}_3q_2-\ddot{q}_4q_1+\ddot{q}_1q_4-\ddot{q}_2q_3\\ \end{array} \right]
α1Fα2Fα3F
=2
q¨4q3−q¨3q4+q¨2q1−q¨1q2q¨2q4−q¨1q3+q¨4q2−q¨3q1q¨3q2−q¨4q1+q¨1q4−q¨2q3
简化为:
α
⃗
F
=
2
B
q
⃗
¨
F
\vec{\alpha}^F=2B\ddot{\vec{q}}^F
αF=2Bq¨F,其中:
B
3
×
4
=
[
−
q
2
q
1
−
q
4
q
3
−
q
3
q
4
q
1
−
q
2
−
q
4
−
q
3
q
2
q
1
]
B_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& -q_4& q_3\\ -q_3& q_4& q_1& -q_2\\ -q_4& -q_3& q_2& q_1\\ \end{array} \right]
B3×4=
−q2−q3−q4q1q4−q3−q4q1q2q3−q2q1
5.3 欧拉参数的重要性质
根据前述定义: q ⃗ = [ s v ⃗ ] = [ cos θ 2 → s c a l e p a r t v ⃗ sin θ 2 → v e c t o r p a r t ] = [ cos θ 2 v 1 sin θ 2 v 2 sin θ 2 v 3 sin θ 2 ] = [ q 1 q 2 q 3 q 4 ] \vec{q}=\left[ \begin{array}{c} s\\ \vec{v}\\ \end{array} \right] =\left[ \begin{matrix} \cos \frac{\theta}{2}& \rightarrow scale\,\,part\\ \vec{v}\sin \frac{\theta}{2}& \rightarrow vector\,\,part\\ \end{matrix} \right] =\left[ \begin{array}{c} \cos \frac{\theta}{2}\\ v_1\sin \frac{\theta}{2}\\ v_2\sin \frac{\theta}{2}\\ v_3\sin \frac{\theta}{2}\\ \end{array} \right] =\left[ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4\\ \end{array} \right] q=[sv]=[cos2θvsin2θ→scalepart→vectorpart]= cos2θv1sin2θv2sin2θv3sin2θ = q1q2q3q4 , B 3 × 4 = [ − q 2 q 1 − q 4 q 3 − q 3 q 4 q 1 − q 2 − q 4 − q 3 q 2 q 1 ] B_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& -q_4& q_3\\ -q_3& q_4& q_1& -q_2\\ -q_4& -q_3& q_2& q_1\\ \end{array} \right] B3×4= −q2−q3−q4q1q4−q3−q4q1q2q3−q2q1 , B ˉ 3 × 4 = [ − q 2 q 1 q 4 − q 3 − q 3 − q 4 q 1 q 2 − q 4 q 3 − q 2 q 1 ] \bar{B}_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& q_4& -q_3\\ -q_3& -q_4& q_1& q_2\\ -q_4& q_3& -q_2& q_1\\ \end{array} \right] Bˉ3×4= −q2−q3−q4q1−q4q3q4q1−q2−q3q2q1 , 总结其一些有用的性质,进而便于简化运动学与动力学方程:
{ B B T = B ˉ B ˉ T = E B T B = B ˉ T B ˉ = E 4 × 4 − q ⃗ q ⃗ T \begin{cases} BB^{\mathrm{T}}=\bar{B}\bar{B}^{\mathrm{T}}=E\\ B^{\mathrm{T}}B=\bar{B}^{\mathrm{T}}\bar{B}=E_{4\times 4}-\vec{q}\vec{q}^{\mathrm{T}}\\ \end{cases} {BBT=BˉBˉT=EBTB=BˉTBˉ=E4×4−qqT
{ B q ⃗ = B ˉ T q ⃗ = 0 B ˙ q ⃗ = B ˉ ˙ T q ⃗ = 0 B B ˉ ˙ T = B ˙ B ˉ T \begin{cases} B\vec{q}=\bar{B}^{\mathrm{T}}\vec{q}=0\\ \dot{B}\vec{q}=\dot{\bar{B}}^{\mathrm{T}}\vec{q}=0\\ B\dot{\bar{B}}^{\mathrm{T}}=\dot{B}\bar{B}^{\mathrm{T}}\\ \end{cases} ⎩ ⎨ ⎧Bq=BˉTq=0B˙q=Bˉ˙Tq=0BBˉ˙T=B˙BˉT
{ 2 B ˙ B T = − 2 B B ˙ T = ω ⃗ ~ F 2 B ˉ B ˉ ˙ T = − 2 B ˉ ˙ B ˉ T = ω ⃗ ~ M \begin{cases} 2\dot{B}B^{\mathrm{T}}=-2B\dot{B}^{\mathrm{T}}=\tilde{\vec{\omega}}^F\\ 2\bar{B}\dot{\bar{B}}^{\mathrm{T}}=-2\dot{\bar{B}}\bar{B}^{\mathrm{T}}=\tilde{\vec{\omega}}^M\\ \end{cases} ⎩ ⎨ ⎧2B˙BT=−2BB˙T=ω~F2BˉBˉ˙T=−2Bˉ˙BˉT=ω~M
{ B q ⃗ ˙ = − B ˙ q ⃗ B ˉ q ⃗ ˙ = − B ˉ ˙ q ⃗ \begin{cases} B\dot{\vec{q}}=-\dot{B}\vec{q}\\ \bar{B}\dot{\vec{q}}=-\dot{\bar{B}}\vec{q}\\ \end{cases} {Bq˙=−B˙qBˉq˙=−Bˉ˙q
{ q ⃗ T q ⃗ = 1 q ⃗ ˙ T q ⃗ = 0 \begin{cases} \vec{q}^{\mathrm{T}}\vec{q}=1\\ \dot{\vec{q}}^{\mathrm{T}}\vec{q}=0\\ \end{cases} {qTq=1q˙Tq=0文章来源:https://www.toymoban.com/news/detail-823176.html
考虑存在如下的旋转变换关系 :
[
Q
M
F
]
=
[
Q
A
F
]
[
Q
M
A
]
\left[ Q_{\mathrm{M}}^{F} \right] =\left[ Q_{\mathrm{A}}^{F} \right] \left[ Q_{\mathrm{M}}^{A} \right]
[QMF]=[QAF][QMA] , 各旋转矩阵对应的欧拉参数分别为:
q
⃗
→
M
F
,
q
⃗
→
A
F
,
q
⃗
→
M
A
\vec{q}_{\rightarrow \mathrm{M}}^{F},\vec{q}_{\rightarrow \mathrm{A}}^{F},\vec{q}_{\rightarrow \mathrm{M}}^{A}
q→MF,q→AF,q→MA,则存在如下转换关系:
q
⃗
→
M
F
=
[
q
1
F
→
M
q
2
F
→
M
q
3
F
→
M
q
4
F
→
M
]
=
D
q
⃗
→
M
A
=
[
−
q
1
F
→
A
q
2
F
→
A
q
3
F
→
A
q
4
F
→
A
−
q
2
F
→
A
−
q
1
F
→
A
q
4
F
→
A
−
q
3
F
→
A
−
q
3
F
→
A
−
q
4
F
→
A
−
q
1
F
→
A
q
2
F
→
A
−
q
4
F
→
A
q
3
F
→
A
−
q
2
F
→
A
−
q
1
F
→
A
]
[
q
1
A
→
M
q
2
A
→
M
q
3
A
→
M
q
4
A
→
M
]
,
D
=
[
−
q
1
F
→
A
q
2
F
→
A
q
3
F
→
A
q
4
F
→
A
−
q
2
F
→
A
−
q
1
F
→
A
q
4
F
→
A
−
q
3
F
→
A
−
q
3
F
→
A
−
q
4
F
→
A
−
q
1
F
→
A
q
2
F
→
A
−
q
4
F
→
A
q
3
F
→
A
−
q
2
F
→
A
−
q
1
F
→
A
]
\vec{q}_{\rightarrow \mathrm{M}}^{F}=\left[ \begin{array}{c} q_{1}^{F\rightarrow M}\\ q_{2}^{F\rightarrow M}\\ q_{3}^{F\rightarrow M}\\ q_{4}^{F\rightarrow M}\\ \end{array} \right] =D\vec{q}_{\rightarrow \mathrm{M}}^{A}=\left[ \begin{matrix} -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& q_{4}^{F\rightarrow A}\\ -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{4}^{F\rightarrow A}& -q_{3}^{F\rightarrow A}\\ -q_{3}^{F\rightarrow A}& -q_{4}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}\\ -q_{4}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}\\ \end{matrix} \right] \left[ \begin{array}{c} q_{1}^{A\rightarrow M}\\ q_{2}^{A\rightarrow M}\\ q_{3}^{A\rightarrow M}\\ q_{4}^{A\rightarrow M}\\ \end{array} \right] ,D=\left[ \begin{matrix} -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& q_{4}^{F\rightarrow A}\\ -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{4}^{F\rightarrow A}& -q_{3}^{F\rightarrow A}\\ -q_{3}^{F\rightarrow A}& -q_{4}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}\\ -q_{4}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}\\ \end{matrix} \right]
q→MF=
q1F→Mq2F→Mq3F→Mq4F→M
=Dq→MA=
−q1F→A−q2F→A−q3F→A−q4F→Aq2F→A−q1F→A−q4F→Aq3F→Aq3F→Aq4F→A−q1F→A−q2F→Aq4F→A−q3F→Aq2F→A−q1F→A
q1A→Mq2A→Mq3A→Mq4A→M
,D=
−q1F→A−q2F→A−q3F→A−q4F→Aq2F→A−q1F→A−q4F→Aq3F→Aq3F→Aq4F→A−q1F→A−q2F→Aq4F→A−q3F→Aq2F→A−q1F→A
文章来源地址https://www.toymoban.com/news/detail-823176.html
到了这里,关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-5 刚体的加速度与角加速度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!