深度学习-Pytorch数据集构造和分批加载

这篇具有很好参考价值的文章主要介绍了深度学习-Pytorch数据集构造和分批加载。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深度学习-Pytorch数据集构造和分批加载

pytorch 目前在深度学习具有重要的地位,比起早先的caffe,tensorflow,keras越来越受到欢迎,其他的深度学习框架越来越显得小众。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

经典算法

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

LLM应用

大模型查询工具助手之股票免费查询接口

Python技巧-终端屏幕打印光标和文字控制

导入模块

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

pytorch 有两个处理数据的核心模块,torch.utils.data.DataLoader 和 torch.utils.data.Dataset 。

数据集 Dataset 存储样本和对应的标签,而DataLoader 则按设定数据包的大小把数据集迭代进行打包。

构造数据集

针对文本,视觉和音频数据,Pytorch还提供特定数据的模块,例如 TorchText, TorchVision, and TorchAudio, 包括样例数据集。为了方便起见,在此使用视觉数据集举例。

torchvision.datasets 模块的Dataset对象,就包含真实世界的很多图像数据,比如CIFAR, COCO。而常用举例的数据包括MNIST手写体,FashionMNIST 等等。

对于每个图像数据集而言,很关键的是有两个参数,方便大家使用,达到事半功倍的效果。它们是

transform 和 target_transform, 提供原始的图像数据转化功能,例如 转为tensor 的函数ToTensor:

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)

分批加载数据

深度学习训练数据集都很大,几乎不可能把所有数据一次加载进行训练,通常需要分批次进行加载。pytorch封装数据加载函数,把数据集作为参数,调用DataLoader函数。要把数据打包,一次次分批返回数据包。函数支持自动分批次,抽样,随机打乱,多次加载等功能。下面定义每批数据共有64个样本:

batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
    print(f"Shape of X [N, C, H, W]: {X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break

Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64

很简单吧,里面把数据按批次加载了,每批64个样本,样本为单通道数据,长和宽分别为28像素。

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End


GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客文章来源地址https://www.toymoban.com/news/detail-823591.html

到了这里,关于深度学习-Pytorch数据集构造和分批加载的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch 深度学习之加载数据集Dataset and DataLoader(七)

    全部Batch:计算速度,性能有问题 1 个 :跨越鞍点 mini-Batch:均衡速度与性能 两种处理数据的方式 linux 与 windows 多线程不一样 torchvision 内置数据集 MINIST Dataset

    2024年02月07日
    浏览(39)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十六):自定义网络层、保存/加载参数、使用GPU

    自定义网络层很简单,三步即可完成 继承类:nn.Module 定义初始化函数:__init__中定义需要初始化的代码 定义向前传播函数:forward 1)定义网络层

    2024年02月13日
    浏览(45)
  • Pytorch深度强化学习案例:基于Q-Learning的机器人走迷宫

    本专栏重点介绍强化学习技术的数学原理,并且 采用Pytorch框架对常见的强化学习算法、案例进行实现 ,帮助读者理解并快速上手开发。同时,辅以各种机器学习、数据处理技术,扩充人工智能的底层知识。 🚀详情:

    2024年02月04日
    浏览(57)
  • 【深度学习】Pytorch 系列教程(十二):PyTorch数据结构:4、数据集(Dataset)

             目录 一、前言 二、实验环境 三、PyTorch数据结构 0、分类 1、张量(Tensor) 2、张量操作(Tensor Operations) 3、变量(Variable) 4、数据集(Dataset) 随机洗牌           ChatGPT:         PyTorch是一个开源的机器学习框架,广泛应用于深度学习领域。它提供了丰富

    2024年02月07日
    浏览(43)
  • 深度学习基础知识-pytorch数据基本操作

    1.1.1 数据结构 机器学习和神经网络的主要数据结构,例如                 0维:叫标量,代表一个类别,如1.0                 1维:代表一个特征向量。如  [1.0,2,7,3.4]                 2维:就是矩阵,一个样本-特征矩阵,如: [[1.0,2,7,3.4 ]                   

    2024年02月11日
    浏览(46)
  • Pytorch目标分类深度学习自定义数据集训练

    目录 一,Pytorch简介; 二,环境配置; 三,自定义数据集; 四,模型训练; 五,模型验证;         PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch 基于 Python: PyTorch 以 Python 为中心或“pythonic”,旨在深度集成 Python 代码,而不是

    2024年02月07日
    浏览(56)
  • 【深度学习】PyTorch的dataloader制作自定义数据集

    PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割成小batch,并在训练过程中进行数据预处理。以下是制作PyTorch的dataloader的简单步骤: 导入必要的库 定义数据集类 需要自定义一个继承自 torch.utils.data.Dataset 的类,在该类中实现 __len__ 和 __getitem__ 方法。 创建

    2024年02月10日
    浏览(51)
  • Pytorch和Tensoflow对比学习第三周--Day 19-20: 数据加载和预处理

    这两天的学习重点是掌握在PyTorch和TensorFlow中进行数据加载和预处理的方法。正确的数据处理是训练有效模型的关键步骤。 数据加载和预处理: 学习了如何使用PyTorch的DataLoader和Dataset类以及TensorFlow的数据API来加载和预处理数据。 理解了数据标准化、转换和批处理的重要性。

    2024年01月20日
    浏览(56)
  • 【深度学习】pytorch——实现CIFAR-10数据集的分类

    笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 往期文章: 【深度学习】pytorch——快速入门 CIFAR-10是一个常用的图像分类数据集,每张图片都是 3×32×32,3通道彩色图片,分辨率为 32×32。 它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于

    2024年02月06日
    浏览(49)
  • JAX: 快如 PyTorch,简单如 NumPy - 深度学习与数据科学

    JAX 是 TensorFlow 和 PyTorch 的新竞争对手。 JAX 强调简单性而不牺牲速度和可扩展性。由于 JAX 需要更少的样板代码,因此程序更短、更接近数学,因此更容易理解。 长话短说: 使用 import jax.numpy 访问 NumPy 函数,使用 import jax.scipy 访问 SciPy 函数。 通过使用 @jax.jit 进行装饰,可

    2024年02月03日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包