【小呆的力学笔记】弹塑性力学的初步认知二:应力应变分析(2)

这篇具有很好参考价值的文章主要介绍了【小呆的力学笔记】弹塑性力学的初步认知二:应力应变分析(2)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.4 主应力空间、八面体应力

一点的应力状态不论如何变化,其主应力和主方向一致的话,该点的应力状态就是唯一确定的。因此,我们用主应力方向建立一个三维坐标系来描述问题将不失一般性,该坐标系如下图4,我们称之为主应力空间。我们考察等倾面组成的八面体,图中O’P点为等倾面ABC上面的应力向量 ( p 1 , p 2 , p 3 ) (p_1,p_2,p_3) (p1,p2,p3),八面体为等倾面八面体,即面ABC的法线方向余弦为 ( 1 3 , 1 3 , 1 3 ) (\frac{1}{\sqrt 3},\frac{1}{\sqrt 3},\frac{1}{\sqrt 3}) (3 1,3 1,3 1)。将O’P分解
O ’ P ‾ = O ’ Q ‾ + O ’ N ‾ (25) \overline {O’P}=\overline {O’Q}+\overline{O’N}\tag{25} OP=OQ+ON(25)

【小呆的力学笔记】弹塑性力学的初步认知二:应力应变分析(2),笔记,线性代数,矩阵,有限元

图 4 八面体 图4八面体 4八面体
取等倾面和三个轴的坐标面组成的四面体为研究对象,如下图5所示。
【小呆的力学笔记】弹塑性力学的初步认知二:应力应变分析(2),笔记,线性代数,矩阵,有限元
图 5 等倾面四面体 图5等倾面四面体 5等倾面四面体
根据斜面应力公式 p j = σ i j n i p_j=\sigma_{ij}n_i pj=σijni,不难得到以下关系式(矩阵形式)
[ p 1 p 2 p 3 ] = [ σ 1 0 0 0 σ 2 0 0 0 σ 2 ] [ n 1 n 2 n 3 ] (26) \begin{bmatrix} p_1 \\ p_2\\p_3 \end{bmatrix}=\begin{bmatrix} \sigma_1 & 0 & 0\\ 0 & \sigma_2 & 0 \\0 & 0 & \sigma_2 \end{bmatrix}\begin{bmatrix} n_1 \\ n_2\\n_3 \end{bmatrix}\tag{26} p1p2p3 = σ1000σ2000σ2 n1n2n3 (26)

其中 ( n 1 , n 2 , n 3 ) = ( 1 3 , 1 3 , 1 3 ) (n_1 ,n_2,n_3)=(\frac{1}{\sqrt 3},\frac{1}{\sqrt 3},\frac{1}{\sqrt 3}) (n1,n2,n3)=(3 1,3 1,3 1)为等倾面的法线方向余弦。
那么,有
σ 8 = [ n 1 n 2 n 3 ] [ p 1 p 2 p 3 ] = σ 1 n 1 2 + σ 2 n 2 2 + σ 3 n 3 2 = 1 3 ( σ 1 + σ 2 + σ 3 ) = 1 3 I 1 (27) \sigma_8 = \begin{bmatrix} n_1 & n_2 & n_3 \end{bmatrix}\begin{bmatrix} p_1 \\ p_2\\p_3 \end{bmatrix}=\sigma_1n_1^2+\sigma_2n_2^2+\sigma_3n_3^2=\frac{1}{3}(\sigma_1+\sigma_2+\sigma_3)=\frac{1}{3}I_1 \tag{27} σ8=[n1n2n3] p1p2p3 =σ1n12+σ2n22+σ3n32=31(σ1+σ2+σ3)=31I1(27)
八面体相应的剪应力为
τ 8 = p 2 − σ 8 2 = p 1 2 + p 2 2 + p 3 2 − ( σ 1 n 1 2 + σ 2 n 2 2 + σ 3 n 3 2 ) 2 = σ 1 2 n 1 2 + σ 2 2 n 2 2 + σ 3 2 n 3 2 − ( σ 1 n 1 2 + σ 2 n 2 2 + σ 3 n 3 2 ) 2 = 1 3 ( σ 1 2 + σ 2 2 + σ 3 2 ) − 1 9 ( σ 1 + σ 2 + σ 3 ) 2 = 1 3 3 ( σ 1 2 + σ 2 2 + σ 3 2 ) − ( σ 1 2 + σ 2 2 + σ 3 2 + 2 σ 1 σ 2 + 2 σ 1 σ 3 + 2 σ 2 σ 3 ) = 1 3 ( σ 1 − σ 2 ) 2 + ( σ 1 − σ 3 ) 2 + ( σ 2 − σ 3 ) 2 = 2 3 J 2 = 1 3 s i j s i j (28) \tau_8 = \sqrt{p^2-\sigma_8^2}=\sqrt{p_1^2+p_2^2+p_3^2-(\sigma_1n_1^2+\sigma_2n_2^2+\sigma_3n_3^2)^2}\\ =\sqrt{\sigma_1^2n_1^2+\sigma_2^2n_2^2+\sigma_3^2n_3^2-(\sigma_1n_1^2+\sigma_2n_2^2+\sigma_3n_3^2)^2}\\ =\sqrt{\frac{1}{3}(\sigma_1^2+\sigma_2^2+\sigma_3^2)-\frac{1}{9}(\sigma_1+\sigma_2+\sigma_3)^2}\\ =\frac{1}{3}\sqrt{3(\sigma_1^2+\sigma_2^2+\sigma_3^2)-(\sigma_1^2+\sigma_2^2+\sigma_3^2+2\sigma_1\sigma_2+2\sigma_1\sigma_3+2\sigma_2\sigma_3)}\\ =\frac{1}{3}\sqrt{(\sigma_1-\sigma_2)^2+(\sigma_1-\sigma_3)^2+(\sigma_2-\sigma_3)^2}=\sqrt{\frac{2}{3}J_2}=\sqrt{\frac{1}{3}s_{ij}s_{ij}} \tag{28} τ8=p2σ82 =p12+p22+p32(σ1n12+σ2n22+σ3n32)2 =σ12n12+σ22n22+σ32n32(σ1n12+σ2n22+σ3n32)2 =31(σ12+σ22+σ32)91(σ1+σ2+σ3)2 =313(σ12+σ22+σ32)(σ12+σ22+σ32+2σ1σ2+2σ1σ3+2σ2σ3) =31(σ1σ2)2+(σ1σ3)2+(σ2σ3)2 =32J2 =31sijsij (28)

1.5 应变分析

应变分析的内容同应力分析内容,只是注意一点,应变张量和工程应变在剪应变分量是不同的,定义如下。
[ ε x x ε y x ε z x ε x y ε y y ε z y ε x z ε y z ε z z ] = [ ε x x 1 2 γ y x 1 2 γ z x 1 2 γ x y ε y y 1 2 γ z y 1 2 γ x z 1 2 γ y z ε z z ] (29) \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{yx} & \varepsilon_{zx}\\ \varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{zy}\\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{zz} \end{bmatrix}= \begin{bmatrix} \varepsilon_{xx} & \frac{1}{2}\gamma_{yx} & \frac{1}{2}\gamma_{zx}\\ \frac{1}{2}\gamma_{xy} & \varepsilon_{yy} & \frac{1}{2}\gamma_{zy}\\ \frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} & \varepsilon_{zz} \end{bmatrix}\tag{29} εxxεxyεxzεyxεyyεyzεzxεzyεzz = εxx21γxy21γxz21γyxεyy21γyz21γzx21γzyεzz (29)
同样定义应变偏张量,有如下形式
[ e x x e y x e z x e x y e y y e z y e x z e y z e z z ] = [ ε x x ε y x ε z x ε x y ε y y ε z y ε x z ε y z ε z z ] − [ ε m 0 0 0 ε m 0 0 0 ε m ] (30) \begin{bmatrix} e_{xx} & e_{yx} & e_{zx}\\ e_{xy} & e_{yy} & e_{zy}\\ e_{xz} & e_{yz} & e_{zz} \end{bmatrix}= \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{yx} & \varepsilon_{zx}\\ \varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{zy}\\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{zz} \end{bmatrix}-\begin{bmatrix} \varepsilon_{m} & 0 & 0\\ 0 & \varepsilon_{m} & 0\\ 0 & 0 & \varepsilon_{m} \end{bmatrix}\tag{30} exxexyexzeyxeyyeyzezxezyezz = εxxεxyεxzεyxεyyεyzεzxεzyεzz εm000εm000εm (30)
其中 ε m = 1 3 ( ε x x + ε y y + ε z z ) \varepsilon_{m}=\frac{1}{3}(\varepsilon_{xx}+\varepsilon_{yy}+\varepsilon_{zz}) εm=31(εxx+εyy+εzz)

1.6 特殊应力、应变定义

定义应力强度或等效应力 σ ‾ \overline\sigma σ
σ ‾ = 3 J 2 = 3 2 s i j s i j = 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 1 − σ 3 ) 2 + ( σ 2 − σ 3 ) 2 ] = 1 2 [ ( σ x x − σ y y ) 2 + ( σ x x − σ z z ) 2 + ( σ y y − σ z z ) 2 + 6 ( τ x z 2 + τ x y 2 + τ y z 2 ) ] (31) \overline\sigma=\sqrt{3J_2}=\sqrt{\frac{3}{2}s_{ij}s_{ij}}\\ =\sqrt{\frac{1}{2}[(\sigma_{1}-\sigma_{2})^2+(\sigma_{1}-\sigma_{3})^2+(\sigma_{2}-\sigma_{3})^2]}\\ =\sqrt{\frac{1}{2}[(\sigma_{xx}-\sigma_{yy})^2+(\sigma_{xx}-\sigma_{zz})^2+(\sigma_{yy}-\sigma_{zz})^2+6(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)]} \tag{31} σ=3J2 =23sijsij =21[(σ1σ2)2+(σ1σ3)2+(σ2σ3)2] =21[(σxxσyy)2+(σxxσzz)2+(σyyσzz)2+6(τxz2+τxy2+τyz2)] (31)
定义应变强度或等效应变 ε ‾ \overline \varepsilon ε
ε ‾ = 2 3 e i j e i j (32) \overline \varepsilon=\sqrt{\frac{2}{3}e_{ij}e_{ij}} \tag{32} ε=32eijeij (32)

定义剪切等效应力 T ‾ \overline T T
T ‾ = 1 2 s i j s i j (33) \overline T=\sqrt{\frac{1}{2}s_{ij}s_{ij}} \tag{33} T=21sijsij (33)
定义剪切等效应变 Γ ‾ \overline\Gamma Γ
Γ ‾ = 2 e i j e i j (34) \overline\Gamma=\sqrt{2e_{ij}e_{ij}} \tag{34} Γ=2eijeij (34)
加上上面定义的八面体剪应力、八面体剪应变
τ 8 = 1 3 s i j s i j γ 8 = 4 3 e i j e i j (35) \tau_8=\sqrt{\frac{1}{3}s_{ij}s_{ij}}\\ \gamma_8=\sqrt{\frac{4}{3}e_{ij}e_{ij}}\tag{35} τ8=31sijsij γ8=34eijeij (35)

至于为什么定义这些应力应变,我们在后面再介绍。文章来源地址https://www.toymoban.com/news/detail-824190.html

到了这里,关于【小呆的力学笔记】弹塑性力学的初步认知二:应力应变分析(2)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python学习 —— 初步认知

    Python是一种流行的高级编程语言,具有简单易学、代码可读性高、应用广泛等优势。它是一种解释型语言,可以直接在终端或集成开发环境(IDE)中运行,而无需事先编译。 Python的安装过程非常简单。首先,你可以从Python的官方网站(https://www.python.org)下载安装包。根据操

    2024年02月08日
    浏览(29)
  • 【Linux】冯诺依曼体系结构以及操作系统的初步认知

    🏖️作者:@malloc不出对象 ⛺专栏:Linux的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 本篇文章讲解是冯诺依曼体系结构以及操作系统的初步认知。 我们常见的计算机,如笔记本。我们不常见的计算机,如服

    2024年02月03日
    浏览(84)
  • 【微服务技术二】Feign、Gateway(路由、过滤器、跨域)的初步认知

    之前远程调用使用RestTemplate,代码如下: 使用RestTemplate的缺陷: 代码可读性差,编程体验不统一(莫名的url路径) 参数复杂时的URL难以维护 Feign是一个声明式的http客户端,官方网址: https://github.com/OpenFeign/feign Feign替代RestTemplate 使用Feign的步骤: 1、引入依赖: 2、在消费者

    2024年02月12日
    浏览(32)
  • 二维离散动力学系统的混沌研究【基于matlab的动力学模型学习笔记_9】

    摘 要: 混沌(Chaos)是指发生在确定系统中的貌似随机的不规则运动,本文将基于经典的二维系统,然后根据动力学方程研究其混沌产生过程以及相对应的MATLAB仿真,再讨论Lyapunov指数以及正平衡点。 上一篇中介绍了一维系统,这次我们将维数提升到二。 /*仅当作学习笔记,

    2024年02月05日
    浏览(55)
  • 【现代机器人学】学习笔记七:开链动力学(前向动力学Forward dynamics 与逆动力学Inverse dynamics)

    这节的内容主要讲述机器人动力学的内容。相对于本书其他部分运动学内容相比,把动力学一下子合成了一章。看完以后有三个感受: 1.本章难度相对其他章节较大,因此需要反复去看,以求对重要内容的眼熟,不求全部记住,但只求说起某块内容时,心中有数。2.阅读时一

    2024年02月14日
    浏览(45)
  • 语言认知模型--的学习笔记

    认知语言学:认知科学(cognitive science)与语言学交 叉的一个研究分支,是研究人脑的思维、心智、智能、推理和认识等认知机理及其对语言进 行分析和理解过程的一门学问 语言认知计算模型: 刻画人脑语言认知和理解过程的形式化模型 目的:建立可计算的、复杂度可控的

    2024年02月10日
    浏览(38)
  • 机器人静力学与刚度模型学习笔记

    总算进行到刚度模型了。。。 ❤ 2023.8.6 ❤ 学习资料 →→→【4-10机器人的静力分析】 机器人末端广义力 F = [ f m ] = [ f x f y f z m x m y m z ] F=left[begin{matrix}f\\\\m\\\\end{matrix}right]=left[begin{matrix}f_x\\\\f_y\\\\f_z\\\\m_x\\\\m_y\\\\m_z\\\\end{matrix}right] F = [ f m ​ ] = ​ f x ​ f y ​ f z ​ m x ​ m y ​

    2024年02月13日
    浏览(40)
  • 统计动力学笔记(三)整波滤波器(自留用)

    整波滤波器是一类能够整合具有任意频谱密度的静定随机信号的滤波器。其输入信号往往是 白噪声 。 由统计动力学笔记(二)频谱密度与线性随机系统的动态准确性(自留用)一文可以知道系统输出 x x x 和输入 u u u 之间的互频谱密度: S x ( ω ) = W ( j ω ) W ( − j ω ) S u ( ω

    2024年02月11日
    浏览(80)
  • JUC并发编程学习笔记(一)认知进程和线程

    进程 一个程序,如QQ.exe,是程序的集合 一个进程往往可以包含多个线程,至少包含一个 java默认有两个线程,GC垃圾回收线程和Main线程 线程:一个进程中的各个功能 java无法真正的开启线程,因为java是运行在虚拟机上的,所以只能通过C++,通过native本地方法调用C++开启线程

    2024年02月06日
    浏览(53)
  • 【现代机器人学】学习笔记四:一阶运动学与静力学

    这节课的内容主要讲速度的正向运动学(也就是位置的一阶导数,所以叫一阶运动学)和静力学,这也是本书首次出现动力学相关的内容(刚体运动那节提到的力旋量算是一个概念的介绍)。 个人结合平时的工程项目看,觉得这节课的内容是一个内容和难度上的一个跨越,因

    2023年04月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包