基于蝗虫优化的KNN分类特征选择算法的matlab仿真

这篇具有很好参考价值的文章主要介绍了基于蝗虫优化的KNN分类特征选择算法的matlab仿真。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 KNN分类器基本原理

4.2 特征选择的重要性

4.3 蝗虫优化算法(GOA)

5.完整程序


1.程序功能描述

       基于蝗虫优化的KNN分类特征选择算法。使用蝗虫优化算法,选择最佳的特征,进行KNN分类,从而提高KNN分类的精度。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

基于蝗虫优化的KNN分类特征选择算法的matlab仿真,MATLAB程序开发,# 优化,蝗虫优化,KNN分类,特征选择,matlab

基于蝗虫优化的KNN分类特征选择算法的matlab仿真,MATLAB程序开发,# 优化,蝗虫优化,KNN分类,特征选择,matlab

基于蝗虫优化的KNN分类特征选择算法的matlab仿真,MATLAB程序开发,# 优化,蝗虫优化,KNN分类,特征选择,matlab

3.核心程序

..........................................................
[idx1,~,idx2]= dividerand(rows,0.8,0,0.2);
Ptrain    = PP(idx1,:);   %training data
Ptest     = PP(idx2,:);     %testing data
Ttrain    = TT(idx1);            %training TT
Ttest     = TT(idx2);              %testing TT
%KNN 
idx_m     = fitcknn(Ptrain,Ttrain,'NumNeighbors',5,'Standardize',1);
Tknn      = predict(idx_m,Ptest);
cp        = classperf(Ttest,Tknn);
err       = cp.ErrorRate;
accuracy1 = cp.CorrectRate;


dim=size(PP,2);
lb=0;
ub=1;

%GOA优化过程
Pnum      = 50;  %种群个数
iteration = 100; %迭代次数
[~,Target_pos,ybest]= func_GOA(Pnum,iteration,lb,ub,dim,Ptrain,Ptest,Ttrain,Ttest);
 
[~,accuracy2,~]     = func_Eval(Target_pos,Ptrain,Ptest,Ttrain,Ttest);                                                               

figure;
plot(ybest);
xlabel('GOA优化迭代过程')
ylabel('适应度值' )



figure
bar([accuracy1,accuracy2])
xlabel('1.Predicted by All featrure,  2.Predcited by GOA select featrure')
ylabel('accuracy' )


 
figure
bar([size(Ptest,2),numel(find(Target_pos))])
title('特征选择个数')
xlabel('1.Total Features,    2.Features after GOA Selection');
22   

4.本算法原理

          基于蝗虫优化的KNN(K-最近邻)分类特征选择是一种结合了蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)和KNN分类器的特征选择方法。该方法旨在通过蝗虫优化算法选择最优特征子集,从而提高KNN分类器的分类性能。

4.1 KNN分类器基本原理

       何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:分析一个人时,我们不妨观察和他最亲密的几个人。同理的,在判定一个未知事物时,可以观察离它最近的几个样本,这就是KNN(k最近邻)的方法。简单来说,KNN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑出离这个数据最近的K个点,看看这K个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

         KNN分类器是一种基于实例的学习算法,其工作原理是找到一个新数据点在训练数据集中的K个最近邻居,并根据这些邻居的类别来进行投票,从而确定新数据点的类别。

①初始化距离为最大值;
②计算未知样本和每个训练样本的距离dist;
③得到目前K个最临近样本中的最大距离maxdist;
④如果dist小于maxdist,则将该训练样本作为K-最近邻样本;
⑤重复步骤2、3、4.直到所有未知样本和所有训练样本的距离都算完;
⑥统计K-最近邻样本中每个类标号出现的次数;

⑦选择出现频率最大的类标作为未知样本的类标号。

4.2 特征选择的重要性

       在实际应用中,数据集往往包含许多特征,但并不是所有特征都对分类任务有用。冗余和不相关的特征可能会降低分类器的性能,增加计算复杂度。因此,特征选择是一个重要的预处理步骤,它旨在从原始特征集中选择出最有代表性的特征子集。

4.3 蝗虫优化算法(GOA)

        蝗虫优化算法是一种模拟蝗虫群体行为的优化算法。在GOA中,每个蝗虫代表一个解(即一个特征子集),蝗虫的位置通过模拟蝗虫群体的社会交互和自适应行为进行更新。

       在基于蝗虫优化的KNN分类特征选择中,蝗虫的位置代表一个特征子集,适应度函数通常定义为KNN分类器在验证集上的分类准确率。算法的基本步骤如下:

  1. 初始化蝗虫群体的位置(即特征子集)。
  2. 计算每个蝗虫的适应度值(即KNN分类器的分类准确率)。
  3. 根据适应度值更新蝗虫的位置。
  4. 如果满足停止条件(如达到最大迭代次数或解的质量满足要求),则停止算法;否则,转到步骤2。

最终,算法将返回具有最高适应度值的蝗虫的位置,即最优特征子集。

5.完整程序

VVV文章来源地址https://www.toymoban.com/news/detail-824267.html

到了这里,关于基于蝗虫优化的KNN分类特征选择算法的matlab仿真的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包