描述点云关键点提取ISS3D、Harris3D、NARF、SIFT3D算法原理

这篇具有很好参考价值的文章主要介绍了描述点云关键点提取ISS3D、Harris3D、NARF、SIFT3D算法原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ISS3D(Intrinsic Shape Signatures 3D):ISS3D算法是一种基于曲率变化的点云关键点提取算法。它通过计算每个点与其近邻点的曲率变化,得到该点的稳定性和自适应尺度,从而提取稳定性和尺度合适的关键点。
Harris3D:Harris3D算法是一种基于协方差矩阵的点云关键点提取算法。它通过计算每个点的协方差矩阵,求解特征值和特征向量,来判断该点是否为关键点。具有较好的旋转不变性和尺度不变性。
NARF(Normal Aligned Radial Feature):NARF算法是一种基于法向量的点云关键点提取算法。它通过将点云投影到二维图像上,并计算每个像素周围梯度直方图,来寻找具有唯一性和重复性的关键点。
SIFT3D(Scale Invariant Feature Transform 3D):SIFT3D算法是一种基于高斯差分和尺度空间的点云关键点提取算法。它通过在多个尺度下对点云进行高斯滤波和差分操作,来提取稳定性和尺度不变性的关键点。
这些算法都是常用的点云关键点提取算法,根据具体应用需求选择合适的算法来提取关键点。文章来源地址https://www.toymoban.com/news/detail-824815.html

到了这里,关于描述点云关键点提取ISS3D、Harris3D、NARF、SIFT3D算法原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 点云特征提取算法之ISS

    代码链接 : ISS Github链接:有关于环境感知方面的网络介绍及代码链接 特征点的定义参考这篇博文角点(corner point)、关键点(key point)、特征点(feature point): 在图像处理中,所谓“特征点”,主要指的就是能够在 其他 含有相同场景或目标的 相似图像 中以一种 相同的或至少非

    2024年02月05日
    浏览(42)
  • 【计算机视觉、关键点检测、特征提取和匹配】基于SIFT、PCA-SIFT和GLOH算法在不同图像之间建立特征对应关系,并实现点匹配算法和图像匹配(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码、数据、文章

    2024年03月14日
    浏览(55)
  • 2D人脸关键点转3D人脸关键点的映射~头部姿态笔记

    对通过相机参数计算图像上的二维坐标到三维坐标的映射进行简单探讨。         学习的话直接看他们的就好,我仅是拾人牙慧,拿GPT写给自己看的,图也是直接搬运的别人画的,以下链接有很完善的理论研究和代码提供。 https://medium.com/@susanne.thierfelder/head-pose-estimation

    2024年02月04日
    浏览(51)
  • mmpose关键点(四):优化关键点模型(原理与代码讲解,持续更新)

    在工程中,模型的运行速度与精度是同样重要的,本文中,我会运用不同的方法去优化比较模型的性能,希望能给大家带来一些实用的trick与经验。 有关键点检测相关经验的同学应该知道,关键点主流方法分为Heatmap-based与Regression-based。 其主要区别在于监督信息的不同,Hea

    2024年02月08日
    浏览(66)
  • 关键点数据增强

    1.关键点平移数据增强 2.关键点旋转数据增强 3.关键点可视化 4.json2txt(用YOLOV8进行关键点训练) 5.划分训练集和验证集

    2024年02月09日
    浏览(41)
  • opencv-人脸关键点定位

    2024年02月12日
    浏览(53)
  • Mediapipe人脸关键点检测

    MediaPipe是由google制作的开源的、跨平台的机器学习框架,可以将一些模型部署到不同的平台和设备上使用的同时,也能保住检测速度。 从图中可以发现,能在Python上实现的功能包括人脸检测(Face Detection)、人脸关键点(Face Mesh),手部关键点(Hands)等。利用C++能实现更丰富

    2024年02月02日
    浏览(41)
  • 解剖学关键点检测方向论文翻译和精读:基于热力图回归的CNN融入空间配置实现关键点定位

    Abstract: In many medical image analysis applications, only a limited amount of training data is available due to the costs of image acquisition and the large manual annotation effort required from experts. Training recent state-of-the-art machine learning methods like convolutional neural networks (CNNs) from small datasets is a challenging task. In this wo

    2024年02月09日
    浏览(105)
  • OpenCV实现人脸关键点检测

    目录 实现过程 1,代码解读 1.1 导入工具包 1.2导入所需图像,以及训练好的人脸预测模型 1.3 将 dlib 的关键点对象转换为 NumPy 数组,以便后续处理 1.4图像上可视化面部关键点 1.5# 读取输入数据,预处理 1.6进行人脸检测 1.7遍历检测到的框 1.8遍历每个面部 2,所有代码 3,结果

    2024年04月23日
    浏览(59)
  • 关键点检测SIFT算法笔记

            SIFT(Scale Invariant Feature Transform),尺度不变特征变换。具有旋转不变性、尺度不变性、亮度变化保持不变性,是一种非常稳定的局部特征。在目标检测和特征提取方向占据着重要的地位。         SIFT算法所查找到的关键点是一些很突出,不因光照、仿射变换和噪

    2024年02月16日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包