【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】

这篇具有很好参考价值的文章主要介绍了【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  注意:速读可直接跳转至“4、知识点总结”及“5、计算例题”部分

一、向量、矩阵范数与谱半径

  当涉及到线性代数和矩阵理论时,向量、矩阵范数以及谱半径是非常重要的概念,下面将详细介绍这些内容:

1、向量范数

a. 定义及性质

  考虑一个 n n n 维向量 x x x,定义一个实值函数 N ( x ) N(x) N(x),记作 N ( x ) = ∥ x ∥ N(x) = \|x\| N(x)=x。如果 N ( x ) N(x) N(x) 满足以下条件,那么它就是 x x x 上的一个向量范数(或向量模):

  1. 非负性: N ( x ) ≥ 0 N(x) \geq 0 N(x)0,且 N ( x ) = 0 N(x) = 0 N(x)=0当且仅当 x x x 是零向量。

∥ x ∥ ≥ 0 \|x\| \geq 0 x0 ∥ x ∥ = 0  当且仅当  x = 0 \|x\| = 0 \text{ 当且仅当 } x = \mathbf{0} x=0 当且仅当 x=0

  1. 齐次性: 对于任意实数 α \alpha α(或复数),有 N ( α x ) = ∣ α ∣ ⋅ N ( x ) N(\alpha x) = |\alpha| \cdot N(x) N(αx)=αN(x)

∥ α x ∥ = ∣ α ∣ ⋅ ∥ x ∥ \| \alpha x \| = |\alpha| \cdot \|x\| αx=αx

  1. 三角不等式: 对于任意向量 x x x y y y,有 N ( x + y ) ≤ N ( x ) + N ( y ) N(x + y) \leq N(x) + N(y) N(x+y)N(x)+N(y)

    ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x + y\| \leq \|x\| + \|y\| x+yx+y

补充解释
  • 非负性: 范数是非负的,即它不会为负值。当且仅当向量是零向量时,范数为零。

  • 齐次性: 范数在缩放(乘以常数)下保持一致,即放大或缩小向量会按比例影响其范数。

  • 三角不等式: 范数的三角不等式表示通过两边之和的方式度量两个向量之间的距离。它确保了向量空间中的“三角形”不会变得扭曲。

范数差

  由上述三角不等式可推导出: ∥ x − y ∥ ≥ ∣ ∥ x ∥ − ∥ y ∥ ∣ \|x - y\| \geq |\|x\| - \|y\|| xyxy

  • 推导过程
    • 根据向量范数的三角不等式,对于任意向量 x x x y y y,有: ∥ x − y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x - y\| \leq \|x\| + \|y\| xyx+y 其中

b. 常见的向量范数

l 1 l_1 l1 l 2 l_2 l2 l ∞ l_\infty l 范数

  对于一个 n n n维向量 x = ( x 1 , x 2 , … , x n ) x = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn)

  1. l 1 l_1 l1 范数:
    ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \|x\|_1 = \sum_{i=1}^{n} |x_i| x1=i=1nxi

  2. l 2 l_2 l2 范数:
    ∥ x ∥ 2 = ∑ i = 1 n x i 2 \|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} x2=i=1nxi2

  3. l ∞ l_\infty l 范数:
    ∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \|x\|_\infty = \max_{1 \leq i \leq n} |x_i| x=1inmaxxi

性质
  • 非负性:

    ∥ x ∥ 1 , ∥ x ∥ 2 , ∥ x ∥ ∞ ≥ 0 \|x\|_1, \|x\|_2, \|x\|_\infty \geq 0 x1,x2,x0

  • 齐次性: 对于每个 x x x 和标量 α \alpha α,这三种范数都满足齐次性,即
    ∥ α x ∥ 1 = ∣ α ∣ ⋅ ∥ x ∥ 1 \|\alpha x\|_1 = |\alpha| \cdot \|x\|_1 αx1=αx1 ∥ α x ∥ 2 = ∣ α ∣ ⋅ ∥ x ∥ 2 \|\alpha x\|_2 = |\alpha| \cdot \|x\|_2 αx2=αx2 ∥ α x ∥ ∞ = ∣ α ∣ ⋅ ∥ x ∥ ∞ \|\alpha x\|_\infty = |\alpha| \cdot \|x\|_\infty αx=αx

  • 三角不等式: 对于每对向量 x x x y y y,这三种范数都满足三角不等式:
    ∥ x + y ∥ 1 ≤ ∥ x ∥ 1 + ∥ y ∥ 1 \|x + y\|_1 \leq \|x\|_1 + \|y\|_1 x+y1x1+y1 ∥ x + y ∥ 2 ≤ ∥ x ∥ 2 + ∥ y ∥ 2 \|x + y\|_2 \leq \|x\|_2 + \|y\|_2 x+y2x2+y2 ∥ x + y ∥ ∞ ≤ ∥ x ∥ ∞ + ∥ y ∥ ∞ \|x + y\|_\infty \leq \|x\|_\infty + \|y\|_\infty x+yx+y

关系
  • l 1 l_1 l1 范数、 l 2 l_2 l2 范数、 l ∞ l_\infty l 范数之间存在关系:
    ∥ x ∥ ∞ ≤ ∥ x ∥ 2 ≤ n ∥ x ∥ ∞ \|x\|_\infty \leq \|x\|_2 \leq \sqrt{n}\|x\|_\infty xx2n x ∥ x ∥ ∞ ≤ ∥ x ∥ 1 ≤ n ∥ x ∥ ∞ \|x\|_\infty \leq \|x\|_1 \leq n\|x\|_\infty xx1nx

2、矩阵范数

a. 矩阵的范数

  矩阵的范数是定义在矩阵空间上的实值函数,用于度量矩阵的大小或度量。对于一个矩阵 A A A,矩阵范数通常表示为 N ( A ) N(A) N(A) ∣ ∣ A ∣ ∣ ||A|| A,满足以下条件:

  1. 非负性(Non-negativity):对于任意矩阵 A A A,有 N ( A ) ≥ 0 N(A) \geq 0 N(A)0,且等号成立当且仅当 A A A 是零矩阵。

  2. 齐次性(Homogeneity):对于任意标量 k k k 和矩阵 A A A,有 N ( k A ) = ∣ k ∣ ⋅ N ( A ) N(kA) = |k| \cdot N(A) N(kA)=kN(A)

  3. 三角不等式(Triangle Inequality):对于任意两个矩阵 A A A B B B,有 N ( A + B ) ≤ N ( A ) + N ( B ) N(A + B) \leq N(A) + N(B) N(A+B)N(A)+N(B)

b. 常见的矩阵范数

相容范数
  • 对于任意两个矩阵 A A A B B B,有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ ||AB|| \leq ||A|| \cdot ||B|| ABAB,这被称为相容性质。
  • 对于任意矩阵 A A A 和向量 x x x,有 ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ x ∣ ∣ ||Ax|| \leq ||A|| \cdot ||x|| AxAx,这也是相容性质。
算子范数

【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】,# 计算方法与科学建模,线性代数,矩阵,机器学习

具体而言,常用的算子范数是 p p p范数,其中 p p p 是一个实数。

  • p = ∞ p = \infty p= 时,算子范数被定义为矩阵行的绝对值之和的最大值。即,
    ∣ ∣ A ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∑ j = 1 n ∣ a i j ∣ ||A||_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| A=1inmaxj=1naij
  • p = 1 p = 1 p=1 时,算子范数被定义为矩阵列的绝对值之和的最大值。即,
    ∣ ∣ A ∣ ∣ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 n ∣ a i j ∣ ||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}| A1=1jnmaxi=1naij
  • p = 2 p = 2 p=2 时,算子范数被定义为 A A A 的谱半径。谱半径是矩阵的特征值的按模最大值,表示为 p ( A ) = max ⁡ ∣ λ ∣ p(A) = \max |\lambda| p(A)=maxλ其中 λ \lambda λ A A A 的特征值。

3、谱半径

  待完善……

4、知识点总结

1. 向量范数

  • l 1 l_1 l1 范数(曼哈顿范数)
    ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||x||_1 = \sum_{i=1}^{n} |x_i| x1=i=1nxi

  • l 2 l_2 l2 范数(欧几里得范数)
    ∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n x i 2 ||x||_2 = \sqrt{\sum_{i=1}^{n} x_i^2} x2=i=1nxi2

  • l ∞ l_\infty l 范数(无穷范数)
    ∣ ∣ x ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ||x||_\infty = \max_{1 \leq i \leq n} |x_i| x=1inmaxxi

2. 矩阵范数

  • 弗罗贝尼乌斯范数(矩阵中每项数的平方和的开方值)
    ∣ ∣ A ∣ ∣ F = ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ 2 ||A||_F = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2} AF=i=1nj=1naij2
  • 算子范数
    • 行和范数:当 p = ∞ p = \infty p= 时,算子范数被定义为矩阵中各行元素按绝对值求和所得的最大和数,即,
      ∣ ∣ A ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∑ j = 1 n ∣ a i j ∣ ||A||_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| A=1inmaxj=1naij
    • 列和范数:当 p = 1 p = 1 p=1 时,算子范数被定义为
      矩阵列的绝对值之和的最大值。即,
      ∣ ∣ A ∣ ∣ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 n ∣ a i j ∣ ||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}| A1=1jnmaxi=1naij
    • p = 2 p = 2 p=2 时,算子范数即 A A A 的谱半径,谱半径是矩阵的特征值的按模最大值
      ∣ ∣ A ∣ ∣ 2 = λ max ( A T A ) = p ( A ) = max ⁡ ∣ λ ∣ ||A||_2 = \sqrt{\lambda_{\text{max}}(A^TA)} = p(A) = \max |\lambda| A2=λmax(ATA) =p(A)=maxλ

3. 谱半径

  谱半径是矩阵的特征值按模最大的那个值,对于一个 n × n n \times n n×n 的矩阵 A A A,其谱半径 p ( A ) p(A) p(A) 定义为:

p ( A ) = max ⁡ { ∣ λ ∣   ∣   λ  是  A  的特征值 } p(A) = \max \{|\lambda| \ | \ \lambda \text{ 是 } A \text{ 的特征值}\} p(A)=max{λ  λ  A 的特征值}

5、计算例题

对于矩阵 A = [ 2 1 − 1 4 ] A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} A=[2114]计算其各种范数:

∥ A ∥ 1 = max ⁡ j ∑ i ∣ a i j ∣ = max ⁡ { 3 , 5 } = 5 \|A\|_1 = \max_j \sum_i |a_{ij}| = \max\{3, 5\} = 5 A1=jmaxiaij=max{3,5}=5

∥ A ∥ ∞ = max ⁡ i ∑ j ∣ a i j ∣ = max ⁡ { 3 , 5 } = 5 \|A\|_\infty = \max_i \sum_j |a_{ij}| = \max\{3, 5\} = 5 A=imaxjaij=max{3,5}=5

∥ A ∥ 2 = λ max ( A T A ) \|A\|_2 = \sqrt{\lambda_{\text{max}}(A^TA)} A2=λmax(ATA)

计算 A T A A^TA ATA 的特征值,找到最大特征值 λ max \lambda_{\text{max}} λmax

A T A = [ 5 − 2 − 2 17 ] A^TA = \begin{bmatrix} 5 & -2 \\ -2 & 17 \end{bmatrix} ATA=[52217]

特征值为 λ 1 = 11 + 2 10 \lambda_1 = 11+2\sqrt{10} λ1=11+210 , λ 2 = 11 − 2 10 \lambda_2 = 11-2 \sqrt{10} λ2=11210

∥ A ∥ 2 = λ max = 11 + 2 10 = 4.162277 \|A\|_2 = \sqrt{\lambda_{\text{max}}} = \sqrt{11+2\sqrt{10}} =4.162277 A2=λmax =11+210 =4.162277

  1. 谱半径:

    p ( A ) = max ⁡ { ∣ λ ∣ } = 3 p(A) = \max \{|\lambda|\} =3 p(A)=max{λ}=3

    A A A 求特征值,找到最大的绝对值。文章来源地址https://www.toymoban.com/news/detail-824818.html

  • 1范数:5
  • ∞范数:5
  • 2范数:4.162277
  • 谱半径:3

到了这里,关于【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数值线性代数: Krylov子空间法

    本文旨在总结线性方程组求解的相关算法,特别是Krylov子空间法的原理及流程。 注1:限于研究水平,分析难免不当,欢迎批评指正。 注2:文章内容会不定期更新。 对于、,若矩阵第行第列元素的共轭等于矩阵第行第列元素,即,则称矩阵是矩阵的共轭转置矩阵,记作。 可

    2024年02月13日
    浏览(36)
  • 数值线性代数:Arnoldi求解特征值/特征向量

    线性方程组求解 、 最小二乘法 、 特征值/特征向量求解 是(数值)线性代数的主要研究内容。 在力学、气象学、电磁学、金融等学科中,许多问题最终都归结为特征值、特征向量的求解。 ARPACK 使用 IRAM ( Implicit Restarted Arnoldi Method )求解大规模系数矩阵的部分特征值与特征向量

    2024年01月18日
    浏览(51)
  • MATLAB数值分析学习笔记:线性代数方程组的求解和高斯消元法

    工程和科学计算的许多基本方程都是建立在守恒定律的基础之上的,比如质量守恒等,在数学上,可以建立起形如 [A]{x}={b} 的平衡方程。其中{x}表示各个分量在平衡时的取值,它们表示系统的 状态 或 响应; 右端向量{b}由无关系统性态的常数组成通常表示为 外部激励。 矩阵

    2023年04月15日
    浏览(64)
  • 线性代数的学习和整理15:线性代数的快速方法

       5  空间的同构 下面再谈谈同构。线性空间千千万,应如何研究呢?同构就是这样一个强大的概念,任何维数相同的线性空间之间是同构的,空间的维数是简单而深刻的,简单的自然数居然能够刻画空间最本质的性质。借助于同构,要研究任意一个n维线性空间,只要研究

    2024年02月11日
    浏览(60)
  • 数学与计算机(2)- 线性代数

    原文:https://blog.iyatt.com/?p=13044 NumPy 中 array 和 matrix 都可以用于储存矩阵,后者是前者的子类,array 可以表示任意维度,matrix 只能是二维,相当于矩阵专用,在一些矩阵的运算操作上较为直观。 1.1.1 自定义矩阵 NumPy 通过元组货列表创建的矩阵类型都相同 1.1.2 随机元素矩阵

    2024年03月23日
    浏览(51)
  • 线性代数Python计算:矩阵对角化

    线性变换 T T T 的矩阵 A ∈ P n × n boldsymbol{A}in P^{ntimes n} A ∈ P n × n 的对角化,即寻求对角阵 Λ boldsymbol{Lambda} Λ ,使得 A boldsymbol{A} A ~ Λ boldsymbol{Lambda} Λ ,需分几步走: (1)解方程 det ⁡ ( λ I − A ) = 0 det(lambdaboldsymbol{I}-boldsymbol{A})=0 det ( λ I − A ) = 0 ,得根 λ 1 , λ

    2024年02月08日
    浏览(47)
  • 线性代数Python计算:线性方程组的最小二乘解

    给定ℝ上无解线性方程组 A x = b boldsymbol{Ax}=boldsymbol{b} Ax = b ,构造 A T A boldsymbol{A}^text{T}boldsymbol{A} A T A 及 A T b boldsymbol{A}^text{T}boldsymbol{b} A T b ,然后调用博文《线性方程组的通解》定义的mySolve函数,解方程组 A T A x = A T b boldsymbol{A}^text{T}boldsymbol{Ax}=boldsymbol{A}^text{T

    2023年04月08日
    浏览(59)
  • [量子计算与量子信息] 2.1 线性代数

    符号对照表 量子力学中,向量使用 ∣ ψ ⟩ ket psi ∣ ψ ⟩ (ket)来表示,可以理解为一个列向量。其对偶向量为 ⟨ ψ ∣ bra psi ⟨ ψ ∣ ,可以理解为行向量。 向量空间中零向量直接用 0 0 0 表示, ∣ 0 ⟩ ket{0} ∣ 0 ⟩ 已有了其他含义。 2.1.1 基与线性无关 向量空间中的一个

    2024年02月03日
    浏览(44)
  • 计算机网络+线性代数+大学物理

    不加湘潭大学的tag,防止曝光率太高哈哈 选择题确定的是5个题,填空题确定的是2个题,简答题前两个确定,然后就没有了,2×7+6×2,26+,确实是比较难,我复习的方向和考试的方向偏差比较大 等成绩出来了我在评论区更新我的分数,下学期开始不能再考前速成了,一方

    2024年02月02日
    浏览(45)
  • 计算机图形学线性代数相关概念

    Scale(缩放) [ x ′ y ′ ] = [ s 0 0 s ] [ x y ] (等比例缩放) left[ begin{matrix} x\\\' \\\\ y\\\' end{matrix} right]= left[ begin{matrix} s 0 \\\\ 0 s end{matrix} right] left[ begin{matrix} x \\\\ y end{matrix} right] tag{等比例缩放} [ x ′ y ′ ​ ] = [ s 0 ​ 0 s ​ ] [ x y ​ ] ( 等比例缩放 ) [ x ′ y ′ ] = [ s x 0 0 s y ] [ x

    2024年02月10日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包