分库分表已成为过去式,使用分布式数据库才是未来

这篇具有很好参考价值的文章主要介绍了分库分表已成为过去式,使用分布式数据库才是未来。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

转载至我的博客 https://www.infrastack.cn ,公众号:架构成长指南

当我们使用 Mysql数据库到达一定量级以后,性能就会逐步下降,而解决此类问题,常用的手段就是引入数据库中间件进行分库分表处理,比如使用 MycatShadingShperetddl,但是这种都是过去式了,现在使用分布式数据库可以避免分库分表

为什么不建议分库分表呢?

分库分表以后,会面临以下问题

  • 分页问题,例如:使用传统写法,随着页数过大性能会急剧下降
  • 分布式事务问题
  • 数据迁移问题,例如:需要把现有数据通过分配算法导入到所有的分库中
  • 数据扩容问题,分库分表的数据总有一天也会到达极限,需要增大分片
  • 开发模式变化,比如在请求数据时,需要带分片键,否则就会导致所有节点执行
  • 跨库跨表查询问题
  • 业务需要进行一定取舍,由于分库分表的局限性,有些场景下需要业务进行取舍

以上只是列举了一部分问题,为了避免这些问题,可以使用分布式数据库TiDB来处理

TiDB介绍

TiDB 是 PingCAP 公司研发的一款开源分布式关系型数据库,从 2015年 9 月开源,至今已经有9 年时间,可以说已经非常成熟,它是一款同时支持OLTP(在线事务处理)和OLAP(在线分析处理)的融合型分布式数据库产品,具备水平扩缩容,金融级高可用、实时 HTAP(Hybrid Transactional and Analytical Processing)、云原生的分布式数据库,兼容 MySQL 5.7 协议和 MySQL 生态等重要特性,它适合高可用、强一致要求较高、数据规模较大等各种应用场景。

核心特性

  • 金融级高可用
  • 在线水平扩容或者缩容,并且存算分离
  • 云原生的分布式数据库,支持部署在公有云,私有云,混合云中
  • 实时HTAP,提供TIKV行存储引擎和TiFlash列存储引擎
  • 兼容MySQL协议和MySQL生态
  • 分布式事务强一致性
  • 从 MySQL 无缝切换到 TiDB,几乎无需修改代码,迁移成本极低
  • PD在分布式理论CAP方面满足CP,是强一致性的

应用场景

  • 对数据一致性及高可靠、系统高可用、可扩展性、容灾要求较高的金融行业属性的场景
  • 对存储容量、可扩展性、并发要求较高的海量数据及高并发的OLTP场景
  • 数据汇聚、二次加工处理的场景

案例

TiDB 有1500 多家不同行业的企业应用在了生产环境,以下是一些有代表性企业,要想查看更多案例,可以访问TiDB 官网查询

系统架构

TIDB Server

SQL 层,对外暴露 MySQL 协议的连接 endpoint,负责接收SQL请求,处理SQL相关的逻辑,并通过PD找到存储计算所需数据的TiKV地址,与TiKV交互获取数据,最终返回结果。TiDB Server 是无状态的,其本身并不存储数据,只负责计算,可以无限水平扩展,可以通过负载均衡组件(LVS、HAProxy或F5)对外提供统一的接入地址,客户端的连接可以均匀地分摊在多个 TiDB 实例上以达到负载均衡的效果。

PD Server

整个集群的管理模块,其主要工作有三个:

  1. 存储集群的元信息(某个Key存储在那个TiKV节点);
  2. 对TiKV集群进行调度和负载均衡、Leader选举;
  3. 分配全局唯一且递增的事务ID。

PD 是一个集群,需要部署奇数个节点,一般线上推荐至少部署3个节点。PD在选举的过程中无法对外提供服务,这个时间大约是3秒。

TIKV Server

TiDB 现在同时支持OLTP 和 OLAP,而TiKV负责存储OLTP数据,从外部看TiKV是一个分布式的提供事务的Key-Value存储引擎。存储数据的基本单位是Region,每个Region负责存储一个Key Range(从StartKey到EndKey的左闭右开区间)的数据,每个TiKV节点会负责多个Region。

TiKV如何做到数据不丢失的?

简单理解,就是把数据复制到多台机器上,这样一个节点down 机,其他节点上的副本还能继续提供服务;复杂理解,需要这个数据可靠并且高效复制到其他节点,并且能处理副本失效的情况,那怎么做呢,就是使用 Raft一致性算法

Region 与副本之间通过 Raft 协议来维持数据一致性,任何写请求都只能在 Leader 上写入,并且需要写入多数副本后(默认配置为 3 副本,即所有请求必须至少写入两个副本成功)才会返回客户端写入成功。

分布式事务支持

TiKV 支持分布式事务,我们可以一次性写入多个 key-value 而不必关心这些 key-value 是否处于同一个数据切片 (Region) 上,TiKV 的分布式事务参考了Google 在 BigTable 中使用的事务模型Percolator,具体可以访问论文了解

与MySQL的对比

支持的特性

  • 支持分布式事务,原理是基于Google Percolator,Percolator是基于Bigtable的,所以数据结构直接使用了Bigtable的Tablet。详情可参考https://zhuanlan.zhihu.com/p/39896539
  • 支持锁,TIDB是乐观锁 +MVCC ,MySQL是悲观锁+MVCC,要注意TIDB执行Update、Insert、Delete时不会检查冲突,只有在提交时才会检查写写冲突,所以在业务端执行SQL语句后,要注意检查返回值,即使执行没有出错,提交的时候也可能出错。

不支持的功能特性

  • 不支持存储过程、函数、触发器
  • 自增id只支持在单个TIDB Server的自增,不支持多个TIDB Server的自增。
  • 外键约束
  • 临时表
  • Mysql追踪优化器
  • XA 语法(TiDB 内部使用两阶段提交,但并没有通过 SQL 接口公开)

资源使用情况

以下内容参考:https://pingcap.medium.com/an-8x-system-performance-boost-why-we-migrated-from-mysql-to-a-newsql-database-a42570ab765a

TiDB 具有很高的数据压缩比,MySQL 中的 10.8 TB 数据在 TiDB 中变成了 3.2 TB,还是三副本的总数据量。因此,MySQL 与 TiDB 的空间使用比例为 3.4:1。

同等量级,使用2 年以后,资源使用情况

  • MySQL使用32 个节点,而 TiDB 只有 14 个
  • MySql 用了 512 个 CPU 核心,而 TiDB 将仅使用 224 个,不到 MySQL 的一半。
  • MySQL 使用 48 TB 存储空间,而 TiDB 将使用 16 TB,仅为 MySQL 的 1/3。

性能测试

测试报告 1

来源:https://www.percona.com/blog/a-quick-look-into-tidb-performance-on-a-single-server/

五个 ecs 实例,使用了不同配置,以此测试

  • t2.medium:2 个 CPU 核心
  • x1e.xlarge:4 个 CPU 核心
  • r4.4xlarge:16 个 CPU 核心
  • m4.16xlarge:64 个 CPU 核心
  • m5.24xlarge:96 个 CPU 核心

MySQL 中的数据库大小为 70Gb,TiDB 中的数据库大小为 30Gb(压缩)。该表没有二级索引(主键除外)。

测试用例

  1. 简单计数(*):

     select count(*) from ontime;
    
  2. 简单分组依据

     select count(*), year from ontime group by year order by year;
    
  3. 用于全表扫描的复杂过滤器

    select * from ontime where UniqueCarrier = 'DL' and TailNum = 'N317NB' and FlightNum = '2' and Origin = 'JFK' and Dest = 'FLL' limit 10;
    
  4. 复杂的分组依据和排序依据查询

    select SQL_CALC_FOUND_ROWS 
    FlightDate, UniqueCarrier as carrier,
    FlightNum, 
    Origin, 
    Dest 
    FROM ontime 
    WHERE 
    DestState not in ('AK', 'HI', 'PR', 'VI')
    and OriginState not in ('AK', 'HI', 'PR', 'VI')
    and flightdate > '2015-01-01' 
    and ArrDelay < 15 
    and cancelled = 0 and Diverted = 0  
    and DivAirportLandings = '0'    
    ORDER by DepDelay DESC
    LIMIT 10;
    

    下图表示结果(条形表示查询响应时间,越小越好):

系统基准测试

在 m4.16xlarge 实例上使用 Sysbench 进行点选择(意味着通过主键选择一行,线程范围从 1 到 128)(内存限制:无磁盘读取)。结果在这里。条形代表每秒的交易数量,越多越好:

系统测试报告 2

来源:https://www.dcits.com/show-269-4103-1.html

硬件配置
测试场景

测试分两阶段进行,第一阶段测试数据为100万单,第二阶段测试数据为1300万单。在此基础上,使用Jmeter压力测试10万单结果如下:

从测试结果来看,在小数据量mysql性能是好于TiDB,因为 TiDB 是分布式架构,如果小数据量,在网络通讯节点分发一致性等方面花的时间就很多,然后各个节点执行完还要汇总返回,所以开销是比较大的,但是数据量一上来TiDB 优势就体现出来了,所以如果数据量比较小,没必要使用 TiDB

总结

以上介绍了 TiDB架构,以及它的一些特性,同时也与 mysql 进行了对比,如果贵司的数据量比较大,正在考虑要分库分表,那么完全可以使用它,来避免分库分表,分库分表是一个过渡方案,使用分布式数据库才是终极方案。同时如果贵司的数据量比较小,那么就没必要引入了

扫描下面的二维码关注我们的微信公众帐号,在微信公众帐号中回复◉加群◉即可加入到我们的技术讨论群里面共同学习。文章来源地址https://www.toymoban.com/news/detail-825056.html

到了这里,关于分库分表已成为过去式,使用分布式数据库才是未来的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 解释什么是分布式数据库,列举几种常见的分布式数据库系统

    敏感信息和隐私保护是指在收集、存储和使用个人数据时,需要采取一系列措施来保护这些数据的安全和机密性,防止数据被未经授权的第三方访问、使用或泄露。这些措施包括加密、访问控制、数据脱敏、数据加密、隐私政策等。 在隐私保护的技术手段方面,常用的技术包

    2024年02月08日
    浏览(57)
  • 数据库的分库分表

     

    2024年02月14日
    浏览(45)
  • 数据库分库分表思路

    一. 数据切分 关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据

    2024年02月09日
    浏览(49)
  • 数据库-分库分表初探

    数据量在百万以里,可以通过Tina集从库、优化索引等提升性能 数据量超过千万,为了减少数据库的负担,提升数据库响应速度,缩短查询时间,需要进行分库分表 推荐:采用垂直分库水平分表 总结:分库要解决的是硬件资源的问题,不管是拆分字段,还是拆分数据,都是要

    2024年01月25日
    浏览(44)
  • 浅谈数据库分库分表

    本文主要介绍数据库分库分表相关的基础知识,包括分库分表是什么,为什么要分库分表,以及有哪些解决方案。 数据库分库分表,用英文表示是 \\\"database sharding\\\" or \\\"database partitioning\\\" 。 分库分表是指将一个大型数据库按照一定的规则拆分成多个小型数据库,每个小型数据库

    2024年02月15日
    浏览(46)
  • 解决使用MyBatis Plus自动映射功能中数据库表与实体类不匹配导致映射失败的深度探索与分布式实践

    摘要:在开发Java应用程序过程中,使用MyBatis Plus自动映射功能可以大大简化数据访问层的开发。然而,当数据库表与实体类的字段与属性没有对应关系时,可能会导致映射失败。本篇文章将深入探索这一问题,并结合Java深度和分布式实践,提供解决方案。 在开发基于Java的应

    2024年02月04日
    浏览(96)
  • 分布式数据库架构

    对于mysql架构,一定会使用到读写分离,在此基础上有五种常见架构设计:一主一从或多从、主主复制、级联复制、主主与级联复制结合。 1.1、主从复制 这种架构设计是使用的最多的。在读写分离的基础上,会存在一台master作为写机,一个或多个slave作为读机。因为在实际的

    2024年02月10日
    浏览(50)
  • MySQL数据库分库分表备份

    分库备份 创建脚本并编写 [root@localhost scripts]# vim bak_db_v1.sh #!/bin/bash 备份的路径 bak_path=/backup/db 账号密码 mysql_cmd=\\\'-uroot -pRedHat@123\\\' 需要排除的数据库 exclude_db=\\\'information_schema|mysql|performance_schema|sys\\\' 检验备份路径是否存在,不存在则创建 [ -d ${bak_path} ] || mkdir -p ${bak_path} 提取需要

    2024年02月14日
    浏览(46)
  • 分布式数据库HBase

    HBase是一个高可靠、高性能、 面向列 、可伸缩的分布式数据库,是谷歌BigTable的开源实现,主要用来存储非结构化和把结构化的松散数据。 HBase的目标是处理非常庞大的表,可以通过水平扩展的方式,利用 廉价计算机集群 处理由超过10亿行数据和数百万列元素组成的数据表。

    2024年02月09日
    浏览(57)
  • shell脚本:数据库的分库分表

     

    2024年02月15日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包