深度学习之pytorch实现线性回归

这篇具有很好参考价值的文章主要介绍了深度学习之pytorch实现线性回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pytorch用到的函数

torch.nn.Linearn()函数

torch.nn.Linear(in_features, # 输入的神经元个数
           out_features, # 输出神经元个数
           bias=True # 是否包含偏置
           )

深度学习之pytorch实现线性回归,机器学习,深度学习,pytorch,线性回归

作用j进行线性变换
Linear(1, 1) : 表示一维输入,一维输出

torch.nn.MSELoss()函数

深度学习之pytorch实现线性回归,机器学习,深度学习,pytorch,线性回归

torch.optim.SGD()

优化器对象
深度学习之pytorch实现线性回归,机器学习,深度学习,pytorch,线性回归

代码实现

import torch

x_data = torch.tensor([[1.0], [2.0], [3.0]])  # 将x_data设置为tensor类型数据
y_data = torch.tensor([[2.0], [4.0], [6.0]])


class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()  # 继承父类
        self.linear = torch.nn.Linear(1, 1)
        # 用torch.nn.Linear来构造对象  (y = w * x + b)
        
    def forward(self, x):
        y_pred = self.linear(x) #调用之前的构造的对象(调用构造函数),计算 y = w * x + b
        return y_pred


model = LinearModel()

criterion = torch.nn.MSELoss(size_average=False)  # 定义损失函数,不求平均损失(为False)

#优化器对象
# #model.parameters()会扫描module中的所有成员,如果成员中有相应权重,那么都会将结果加到要训练的参数集合上
# #类似权重的更新
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 定义梯度优化器为随机梯度下降

for epoch in range(10000):  # 训练过程
    y_pred = model(x_data)  # 向前传播,求y_pred
    loss = criterion(y_pred, y_data)  # 根据y_pred和y_data求损失
    print(epoch, loss)
    
    # 记住在backward之前要先梯度归零
    
    optimizer.zero_grad()  # 将优化器数值清零
    loss.backward()  # 反向传播,计算梯度
    optimizer.step()  # 根据梯度更新参数


#打印权重和b
print("w = ", model.linear.weight.item())
print("b = ", model.linear.bias.item())


#检测模型
x_test = torch.tensor([4.0])
y_test = model(x_test)
print('y_pred = ', y_test.data)  # 测试

结果分析

9961 tensor(4.0927e-12, grad_fn=)
9962 tensor(4.0927e-12, grad_fn=)
9963 tensor(4.0927e-12, grad_fn=)
9964 tensor(4.0927e-12, grad_fn=)
9965 tensor(4.0927e-12, grad_fn=)
9966 tensor(4.0927e-12, grad_fn=)
9967 tensor(4.0927e-12, grad_fn=)
9968 tensor(4.0927e-12, grad_fn=)
9969 tensor(4.0927e-12, grad_fn=)
9970 tensor(4.0927e-12, grad_fn=)
9971 tensor(4.0927e-12, grad_fn=)
9972 tensor(4.0927e-12, grad_fn=)
9973 tensor(4.0927e-12, grad_fn=)
9974 tensor(4.0927e-12, grad_fn=)
9975 tensor(4.0927e-12, grad_fn=)
9976 tensor(4.0927e-12, grad_fn=)
9977 tensor(4.0927e-12, grad_fn=)
9978 tensor(4.0927e-12, grad_fn=)
9979 tensor(4.0927e-12, grad_fn=)
9980 tensor(4.0927e-12, grad_fn=)
9981 tensor(4.0927e-12, grad_fn=)
9982 tensor(4.0927e-12, grad_fn=)
9983 tensor(4.0927e-12, grad_fn=)
9984 tensor(4.0927e-12, grad_fn=)
9985 tensor(4.0927e-12, grad_fn=)
9986 tensor(4.0927e-12, grad_fn=)
9987 tensor(4.0927e-12, grad_fn=)
9988 tensor(4.0927e-12, grad_fn=)
9989 tensor(4.0927e-12, grad_fn=)
9990 tensor(4.0927e-12, grad_fn=)
9991 tensor(4.0927e-12, grad_fn=)
9992 tensor(4.0927e-12, grad_fn=)
9993 tensor(4.0927e-12, grad_fn=)
9994 tensor(4.0927e-12, grad_fn=)
9995 tensor(4.0927e-12, grad_fn=)
9996 tensor(4.0927e-12, grad_fn=)
9997 tensor(4.0927e-12, grad_fn=)
9998 tensor(4.0927e-12, grad_fn=)
9999 tensor(4.0927e-12, grad_fn=)

w = 1.9999985694885254
b = 2.979139480885351e-06
y_pred = tensor([8.0000])

因为轮数过多,这里展示后面几轮
模型的准确性,跟轮数的多少有关系 ,如果轮数为100,最后测试结果的y_pred肯定不为8.00,这里轮数为10000,预测结果跟实际结果基本一样

这里是轮数为100,结果是 7点多,有一定误差
0 tensor(101.4680, grad_fn=)
1 tensor(45.8508, grad_fn=)
2 tensor(21.0819, grad_fn=)
3 tensor(10.0458, grad_fn=)
4 tensor(5.1234, grad_fn=)
5 tensor(2.9227, grad_fn=)
6 tensor(1.9338, grad_fn=)
7 tensor(1.4844, grad_fn=)
8 tensor(1.2754, grad_fn=)
9 tensor(1.1736, grad_fn=)
10 tensor(1.1195, grad_fn=)
11 tensor(1.0869, grad_fn=)
12 tensor(1.0639, grad_fn=)
13 tensor(1.0453, grad_fn=)
14 tensor(1.0288, grad_fn=)
15 tensor(1.0134, grad_fn=)
16 tensor(0.9985, grad_fn=)
17 tensor(0.9841, grad_fn=)
18 tensor(0.9699, grad_fn=)
19 tensor(0.9559, grad_fn=)
20 tensor(0.9421, grad_fn=)
21 tensor(0.9286, grad_fn=)
22 tensor(0.9153, grad_fn=)
23 tensor(0.9021, grad_fn=)
24 tensor(0.8891, grad_fn=)
25 tensor(0.8764, grad_fn=)
26 tensor(0.8638, grad_fn=)
27 tensor(0.8513, grad_fn=)
28 tensor(0.8391, grad_fn=)
29 tensor(0.8271, grad_fn=)
30 tensor(0.8152, grad_fn=)
31 tensor(0.8034, grad_fn=)
32 tensor(0.7919, grad_fn=)
33 tensor(0.7805, grad_fn=)
34 tensor(0.7693, grad_fn=)
35 tensor(0.7582, grad_fn=)
36 tensor(0.7474, grad_fn=)
37 tensor(0.7366, grad_fn=)
38 tensor(0.7260, grad_fn=)
39 tensor(0.7156, grad_fn=)
40 tensor(0.7053, grad_fn=)
41 tensor(0.6952, grad_fn=)
42 tensor(0.6852, grad_fn=)
43 tensor(0.6753, grad_fn=)
44 tensor(0.6656, grad_fn=)
45 tensor(0.6561, grad_fn=)
46 tensor(0.6466, grad_fn=)
47 tensor(0.6373, grad_fn=)
48 tensor(0.6282, grad_fn=)
49 tensor(0.6192, grad_fn=)
50 tensor(0.6103, grad_fn=)
51 tensor(0.6015, grad_fn=)
52 tensor(0.5928, grad_fn=)
53 tensor(0.5843, grad_fn=)
54 tensor(0.5759, grad_fn=)
55 tensor(0.5676, grad_fn=)
56 tensor(0.5595, grad_fn=)
57 tensor(0.5514, grad_fn=)
58 tensor(0.5435, grad_fn=)
59 tensor(0.5357, grad_fn=)
60 tensor(0.5280, grad_fn=)
61 tensor(0.5204, grad_fn=)
62 tensor(0.5129, grad_fn=)
63 tensor(0.5056, grad_fn=)
64 tensor(0.4983, grad_fn=)
65 tensor(0.4911, grad_fn=)
66 tensor(0.4841, grad_fn=)
67 tensor(0.4771, grad_fn=)
68 tensor(0.4703, grad_fn=)
69 tensor(0.4635, grad_fn=)
70 tensor(0.4569, grad_fn=)
71 tensor(0.4503, grad_fn=)
72 tensor(0.4438, grad_fn=)
73 tensor(0.4374, grad_fn=)
74 tensor(0.4311, grad_fn=)
75 tensor(0.4250, grad_fn=)
76 tensor(0.4188, grad_fn=)
77 tensor(0.4128, grad_fn=)
78 tensor(0.4069, grad_fn=)
79 tensor(0.4010, grad_fn=)
80 tensor(0.3953, grad_fn=)
81 tensor(0.3896, grad_fn=)
82 tensor(0.3840, grad_fn=)
83 tensor(0.3785, grad_fn=)
84 tensor(0.3730, grad_fn=)
85 tensor(0.3677, grad_fn=)
86 tensor(0.3624, grad_fn=)
87 tensor(0.3572, grad_fn=)
88 tensor(0.3521, grad_fn=)
89 tensor(0.3470, grad_fn=)
90 tensor(0.3420, grad_fn=)
91 tensor(0.3371, grad_fn=)
92 tensor(0.3322, grad_fn=)
93 tensor(0.3275, grad_fn=)
94 tensor(0.3228, grad_fn=)
95 tensor(0.3181, grad_fn=)
96 tensor(0.3136, grad_fn=)
97 tensor(0.3091, grad_fn=)
98 tensor(0.3046, grad_fn=)
99 tensor(0.3002, grad_fn=)
w = 1.6352288722991943
b = 0.8292105793952942
y_pred = tensor([7.3701])

Process finished with exit code 0文章来源地址https://www.toymoban.com/news/detail-825143.html

到了这里,关于深度学习之pytorch实现线性回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark-机器学习(3)回归学习之线性回归

    在之前的文章中,我们了解我们的机器学习,了解我们spark机器学习中的特征提取和我们的tf-idf,word2vec算法。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。 Spark-机器学习(2)特征工程之特征提

    2024年04月22日
    浏览(44)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(九):从零开始实现线性回归的训练

    在深度学习中,用来训练的数据集通过标注来实现。 咱们在这一步使用函数来生成一组数据集 定义数据生成函数:synthetic_data

    2024年02月14日
    浏览(43)
  • Python和PyTorch深入实现线性回归模型:一篇文章全面掌握基础机器学习技术

    线性回归是一种统计学中的预测分析,该方法用于建立两种或两种以上变量间的关系模型。线性回归使用最佳的拟合直线(也称为回归线)在独立(输入)变量和因变量(输出)之间建立一种直观的关系。简单线性回归是输入变量和输出变量之间的线性关系,而多元线性回归

    2024年02月15日
    浏览(53)
  • 深度学习之pytorch实现逻辑斯蒂回归

    logistic 适用于分类问题,这里案例( y为0和1 ,0和 1 分别代表一类) 于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性 也是用y=wx+b的模型来举例,之前的输出y属于实数集合R,现在我们要输出一个一个概率,也就是在区间[0,1]之间。我们就想到需要找出一

    2024年02月20日
    浏览(34)
  • PyTorch深度学习实战 | 预测工资——线性回归

    通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 可以看出,这是一个用工作年限预

    2023年04月11日
    浏览(48)
  • 线性神经网路——线性回归随笔【深度学习】【PyTorch】【d2l】

    线性回归是显式解,深度学习中绝大多数遇到的都是隐式解。 3.1.1、PyTorch 从零实现线性回归 生成数据集及标签 d2l.plt.scatter(,,) ,使用d2l库中的绘图函数来创建散点图。 这个函数接受三个参数: features[:,1].detach().numpy() 是一个二维张量features的切片操作,选择了所有行的第二

    2024年02月15日
    浏览(61)
  • 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

    随机梯度下降(SGD)也称为增量梯度下降,是一种迭代方法,用于优化可微分目标函数。该方法通过在小批量数据上计算损失函数的梯度而迭代地更新权重与偏置项。SGD在高度非凸的损失表面上远远超越了朴素梯度下降法,这种简单的爬山法技术已经主导了现代的非凸优化。

    2024年02月03日
    浏览(57)
  • 机器学习&&深度学习——线性回归的基本元素

    回归用来表示输入输出之间的关系。 用实际例子来解释一下线性回归:根据房屋的面积、房龄来估算房屋价格。为了实现这个预测放假的模型,需要收集一个真实的数据集,该数据集包括了房屋的销售价格、面积和房龄。 在机器学习中,这个数据集称为 训练集(training set)

    2024年02月15日
    浏览(52)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(八):线性回归

    线性函数如下: y ^ = w 1 x 1 + . . . + w d x d

    2024年02月14日
    浏览(51)
  • 机器学习与深度学习——自定义函数进行线性回归模型

    目的与要求 1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型

    2024年02月13日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包