【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

这篇具有很好参考价值的文章主要介绍了【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预测,应用LogisticRegression实现逻辑回归预测,应用DecisionTreeClassifier实现决策树分类,应用RandomForestClassifie实现随机森林算法,应用Kmeans实现聚类任务。

全套笔记和代码自取移步gitee仓库: gitee仓库获取完整文档和代码

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,44 子模块

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.5 kd树

问题导入:

实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。

这在特征空间的维数大及训练数据容量大时尤其必要。

k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。

为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。


1 kd树简介

1.1 什么是kd树

根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)

kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。

这样优化后的算法复杂度可降低到O(DNlog(N))。感兴趣的读者可参阅论文:Bentley,J.L.,Communications of the ACM(1975)。

1989年,另外一种称为Ball Tree的算法,在kd Tree的基础上对性能进一步进行了优化。感兴趣的读者可以搜索Five balltree construction algorithms来了解详细的算法信息。

1.2 原理

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

1.树的建立;

2.最近邻域搜索(Nearest-Neighbor Lookup)

kd树(K-dimension tree)是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了:[0 1 2 3 4 5 6 7 8 9],按前一种方式我们进行了很多没有必要的查找,现在如果我们以5为分界点,那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。

因此,根本就没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面。

2 构造方法

(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;

(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。

(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

(4)通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。

3 案例分析

3.1 树的建立

给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

(1)思路引导:

根结点对应包含数据集T的矩形,选择x(1)轴,6个数据点的x(1)坐标中位数是6,这里选最接近的(7,2)点,以平面x(1)=7将空间分为左、右两个子矩形(子结点);接着左矩形以x(2)=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的x(2)坐标中位数正好为4),右矩形以x(2)=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

3.2 最近领域的搜索

假设标记为星星的点是 test point, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来。

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

样本集{(2,3),(5,4), (9,6), (4,7), (8,1), (7,2)}

3.2.1 查找点(2.1,3.1)

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4), (2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为0.141;

然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了。

于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141。

3.2.2 查找点(2,4.5)

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202;

然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04。

回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)

回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2,4.5)的最近邻点,最近距离为1.5。

4 总结

首先通过二叉树搜索(比较待查询节点和分裂节点的分裂维的值,小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点),顺着“搜索路径”很快能找到最近邻的近似点,也就是与待查询点处于同一个子空间的叶子结点;

然后再回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索(将其他子结点加入到搜索路径)。

重复这个过程直到搜索路径为空。文章来源地址https://www.toymoban.com/news/detail-825331.html

未完待续, 同学们请等待下一期

到了这里,关于【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】KNN 算法介绍

    KNN 算法,或者称 k-最近邻算法,是 有监督学习 中的 分类算法 。它可以用于分类或回归问题,但它通常用作分类算法。 KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居。该算法用 K 个最近邻来干什么呢?其实,KNN 的原理就是:当预测一个新样本的类别时, 根据它距离

    2023年04月24日
    浏览(84)
  • 【机器学习笔记】7 KNN算法

    欧几里得度量(Euclidean Metric)(也称欧氏距离)是一个通常采用的距离定义,指在𝑚维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。 想象你在城市道路里,要从一个十字路口开车到

    2024年02月21日
    浏览(39)
  • 机器学习小结之KNN算法

    ​ KNN (K-Nearest Neighbor)算法是一种最简单,也是一个很实用的机器学习的算法,在《 机器学习实战 》这本书中属于第一个介绍的算法。它属于基于实例的 有监督学习 算法,本身不需要进行训练,不会得到一个概括数据特征的 模型 ,只需要选择合适的参数 K 就可以进行应用。

    2024年02月06日
    浏览(77)
  • 【机器学习实战】K- 近邻算法(KNN算法)

    K-近邻算法 ,又称为  KNN 算法 ,是数据挖掘技术中原理最简单的算法。 KNN  的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。

    2023年04月20日
    浏览(57)
  • 机器学习KNN最邻近分类算法

    KNN (K-Nearest Neighbor) 最邻近分类算法,其核心思想“近朱者赤,近墨者黑”,由你的邻居来推断你的类别。 图中绿色圆归为哪一类? 1、如果k=3,绿色圆归为红色三角形 2、如果k=5,绿色圆归为蓝色正方形 参考文章 knn算法实现原理:为判断未知样本数据的类别,以所有已知样

    2024年04月10日
    浏览(68)
  • 机器学习——K近邻(KNN)算法

    目录 一、knn算法概述 1.简单介绍 2.工作原理 3.knn算法中常用的距离指标 4.knn算法优势 5.knn算法一般流程 二、knn算法经典实例——海伦约会网站 三、关于天气和旅行适合度的例子 四、总结 K近邻算法(KNN)是一种用于分类和回归的统计方法。k-近邻算法采用测量不同特征值之

    2024年01月16日
    浏览(38)
  • 机器学习——kNN算法之红酒分类

    目录 StandardScaler的使用 KNeighborsClassifier的使用 代码实现 数据集介绍 数据集为一份红酒数据,总共有 178 个样本,每个样本有 13 个特征,这里不会为你提供红酒的标签,你需要自己根据这 13 个特征对红酒进行分类。部分数据如下图: StandardScaler的使用 由于数据中有些特征的

    2024年02月11日
    浏览(38)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(42)
  • 【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 is_array() 可以 「检测」 变量是不是 「数组」 类型。 语法 参数 $var :需要检

    2024年02月16日
    浏览(42)
  • 【机器学习】KNN算法-鸢尾花种类预测

    K最近邻(K-Nearest Neighbors,KNN)算法是一种用于模式识别和分类的简单但强大的机器学习算法。它的工作原理非常直观:给定一个新数据点,KNN算法会查找离这个数据点最近的K个已知数据点,然后基于这K个最近邻数据点的类别来决定新数据点的类别。简而言之,KNN算法通过周

    2024年02月07日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包