λ-矩阵的多项式展开

这篇具有很好参考价值的文章主要介绍了λ-矩阵的多项式展开。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接

定义. 对于 m × n m \times n m×n λ \lambda λ-矩阵 A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)am1(λ)......a1n(λ)amn(λ)

L = max ⁡ 1 ≤ i ≤ m 1 ≤ j ≤ n deg ⁡ { a i j ( λ ) } L=\max\limits_{1\leq i\leq m\atop{1\leq j \leq n}}\deg \{a_{ij}(\lambda)\} L=1jn1immaxdeg{aij(λ)} A ( λ ) \mathbf{A}(\lambda) A(λ) 的次数, 显然每个元素的次数不超过 L L L.

定理. 对于 m × n m \times n m×n λ \lambda λ-矩阵 A ( λ ) \mathbf{A}(\lambda) A(λ), 次数为 L L L, 存在唯一的一组常数 m × n m \times n m×n 矩阵 A 0 \mathbf{A}_0 A0, . . . ... ..., A L \mathbf{A}_{L} AL, 使得: A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL (称之为 A ( λ ) \mathbf{A}(\lambda) A(λ) 的多项式展开式).

存在性: 设

A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)am1(λ)......a1n(λ)amn(λ)

其中 a i j ( λ ) = a i j 0 + a i j 1 λ + . . . + a i j L λ L ,   1 ≤ i ≤ m ,   1 ≤ j ≤ n a_{ij}(\lambda)=a_{ij}^{0}+a_{ij}^{1}\lambda + ... + a_{ij}^{L}\lambda^{L}, \ 1 \leq i \leq m, \ 1 \leq j \leq n aij(λ)=aij0+aij1λ+...+aijLλL, 1im, 1jn, 令 A r = [ a 11 r . . . a 1 n r ⋮ ⋮ a m 1 r . . . a m n r ] ,   0 ≤ r ≤ L \mathbf{A}_{r}=\begin{bmatrix} a_{11}^{r} & ... & a_{1n}^{r}\\ \vdots & & \vdots \\ a_{m1}^{r} & ... & a_{mn}^{r} \end{bmatrix},\ 0\leq r\leq L Ar= a11ram1r......a1nramnr , 0rL

则可以将 A ( λ ) \mathbf{A}(\lambda) A(λ) 表示为 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL.

唯一性: 若不唯一, 则设存在另外一组 m × n m \times n m×n 矩阵 A 0 ′ \mathbf{A}'_0 A0, …, A L ′ \mathbf{A}'_{L} AL, 使得: A ( λ ) = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL.

A ( λ ) = A 0 + A 1 λ + . . . + A L λ L = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L}=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL=A0+A1λ+...+ALλL

( A 0 − A 0 ′ ) + ( A 1 − A 1 ′ ) λ + . . . + ( A L − A L ′ ) λ L = 0 (\mathbf{A}_{0}-\mathbf{A}'_{0})+(\mathbf{A}_{1}-\mathbf{A}'_{1})\lambda+...+(\mathbf{A}_{L}-\mathbf{A}'_{L})\lambda^L=\mathbf{0} (A0A0)+(A1A1)λ+...+(ALAL)λL=0

比较系数可知 A 0 = A 0 ′ \mathbf{A}_{0}=\mathbf{A}'_{0} A0=A0,…, A L = A L ′ \mathbf{A}_{L}=\mathbf{A}'_{L} AL=AL. 矛盾.

存在性的过程也提供了展开式的求法.

定理. A ( λ ) \mathbf{A}(\lambda) A(λ) B ( λ ) \mathbf{B}(\lambda) B(λ) n n n λ \lambda λ-矩阵, 记 deg ⁡ A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg ⁡ B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B ( λ ) \mathbf{B}(\lambda) B(λ) 的多项式展开式中 λ M \lambda^{M} λM 项的系数矩阵可逆, 则存在 n n n λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg ⁡ V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = U ( λ ) B ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{U}(\lambda)\mathbf{B}(\lambda)+\mathbf{V}(\lambda) A(λ)=U(λ)B(λ)+V(λ).

证明: 当 L < M L<M L<M 时, 令 U ( λ ) = 0 \mathbf{U}(\lambda)=\mathbf{0} U(λ)=0, V ( λ ) = A ( λ ) \mathbf{V}(\lambda)=\mathbf{A}(\lambda) V(λ)=A(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ) V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求. 接下来用数学归纳法证明当 L ≥ M L\geq M LM 时结论成立:
L = M = 1 L=M=1 L=M=1 时, 设 A ( λ ) = A 0 + A 1 λ \mathbf{A}(\lambda)=\mathbf{A}_0+\mathbf{A}_1 \lambda A(λ)=A0+A1λ, B ( λ ) = B 0 + B 1 λ \mathbf{B}(\lambda)=\mathbf{B}_0+\mathbf{B}_1 \lambda B(λ)=B0+B1λ, 令 U ( λ ) = A 1 B 1 − 1 \mathbf{U}(\lambda)=\mathbf{A}_1\mathbf{B}_{1}^{-1} U(λ)=A1B11, V ( λ ) = A 0 − A 1 B 1 − 1 \mathbf{V}(\lambda)=\mathbf{A}_0-\mathbf A_1\mathbf B_{1}^{-1} V(λ)=A0A1B11 即为所求.
若结论对于 L = k L=k L=k 成立, 当 L = k + 1 L=k+1 L=k+1 时: 设 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL, B ( λ ) = B 0 + B 1 λ + . . . + B M λ M \mathbf{B}(\lambda)=\mathbf{B}_{0}+\mathbf{B}_{1}\lambda+...+\mathbf{B}_{M}\lambda^{M} B(λ)=B0+B1λ+...+BMλM, 令 A ′ ( λ ) = A ( λ ) − A L B M − 1 λ L − M B ( λ ) \mathbf {A}'(\lambda) = \mathbf{A}(\lambda)-\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}\mathbf{B}(\lambda) A(λ)=A(λ)ALBM1λLMB(λ), 易验证 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 次数小于 L L L, 根据归纳假设, 存在 n n n λ \lambda λ-矩阵 U ′ ( λ ) \mathbf{U}'(\lambda) U(λ), V ′ ( λ ) \mathbf{V}'(\lambda) V(λ), deg ⁡ V ′ ( λ ) < M \deg\mathbf{V}'(\lambda)<M degV(λ)<M, 使得 A ′ ( λ ) = U ′ ( λ ) B ( λ ) + V ′ ( λ ) \mathbf{A}'(\lambda)=\mathbf{U}'(\lambda)\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A(λ)=U(λ)B(λ)+V(λ). 进而有 A ( λ ) = [ A L B M − 1 λ L − M + U ′ ( λ ) ] B ( λ ) + V ′ ( λ ) \mathbf{A}(\lambda)=[\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda)]\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A(λ)=[ALBM1λLM+U(λ)]B(λ)+V(λ). 定义 U ( λ ) = A L B M − 1 λ L − M + U ′ ( λ ) \mathbf{U}(\lambda)=\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda) U(λ)=ALBM1λLM+U(λ), V ( λ ) = V ′ ( λ ) \mathbf{V}(\lambda)=\mathbf{V}'(\lambda) V(λ)=V(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求.

同理可证明: A ( λ ) \mathbf{A}(\lambda) A(λ) B ( λ ) \mathbf{B}(\lambda) B(λ) n n n λ \lambda λ-矩阵, 记 deg ⁡ A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg ⁡ B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B M \mathbf{B}_{M} BM 可逆, 则存在 n n n λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg ⁡ V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = A ( λ ) U ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{A}(\lambda)\mathbf{U}(\lambda)+\mathbf{V}(\lambda) A(λ)=A(λ)U(λ)+V(λ).文章来源地址https://www.toymoban.com/news/detail-825512.html

到了这里,关于λ-矩阵的多项式展开的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 伴侣矩阵求解多项式的根

    已知方程 P ( x ) = ∑ i = 0 n a i x n = 0 P(x) = sum_{i=0}^{n}a_ix^n = 0 P ( x ) = ∑ i = 0 n ​ a i ​ x n = 0 ,通过伴侣矩阵求解该方程的根。 此处参考百度知道,就可以大概知道伴侣矩阵的构建。具体如下, 设 f ( t ) = t n + a 1 t n − 1 + … + a n − 1 t + a n . f(t)=t^n+a_1 t^{n-1}+ldots+a_{n-1} t+a_n .

    2024年02月21日
    浏览(41)
  • 如何求矩阵的最小多项式

    首项系数为1,次数最小,且以矩阵 A A A 为根的多项式,称为 A A A 的最小多项式,常用 m ( λ )

    2024年02月13日
    浏览(40)
  • 每天五分钟机器学习:多项式非线性回归模型

    在前面的课程中,我们学习了线性回归模型和非线性回归模型的区别和联系。多项式非线性回归模型是一种用于拟合非线性数据的回归模型。与线性回归模型不同,多项式非线性回归模型可以通过增加多项式的次数来适应更复杂的数据模式。在本文中,我们将介绍多项式非线

    2024年02月16日
    浏览(47)
  • AA@复数系和实数系多项式因式分解@代数学基本定理

    在一般数域上的结论在特殊数域:复数域和实数域上可以进一步具体化 对于复数域,有重要定理:代数基本代数基本定理 代数基本定理 复系数多项式 f ( x ) f(x) f ( x ) ,( ∂ ( f ( x ) ) ⩾ 1 partial(f(x))geqslant{1} ∂ ( f ( x )) ⩾ 1 )在复数域中有一根 定理的证明较为复杂,此处略去 结合根

    2024年02月16日
    浏览(37)
  • 使用R语言进行多项式回归、非线性回归模型曲线拟合

    对于线性关系,我们可以进行简单的线性回归。对于其他关系,我们可以尝试拟合一条曲线。 相关视频 曲线拟合是构建一条曲线或数学函数的过程,它对一系列数据点具有最佳的拟合效果。 使用示例数据集 看起来我们可以拟合一条曲线。 我们可以看到每条曲线的拟合程度

    2024年02月09日
    浏览(35)
  • 题02-线性结构2 一元多项式的乘法与加法运算(C语言)

    设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。 输出格式: 输出分2行,分别以指数递降方式输出乘积多项式

    2024年02月07日
    浏览(41)
  • 浙大数据结构第二周02-线性结构2 一元多项式的乘法与加法运算

    设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。 输出格式: 输出分2行,分别以指数递降方式输出乘积多项式

    2024年02月13日
    浏览(49)
  • Open3D 非线性最小二乘拟合二维多项式曲线

      多项式曲线表示为: p ( x ) = p 1 x n + p 2 x

    2024年02月07日
    浏览(46)
  • 支持向量机SVM(包括线性核、多项式核、高斯核)python手写实现+代码框架说明

    理论参考《统计学习方法》Chapter.7 支持向量机(SVM) 完整代码见github仓库:https://github.com/wjtgoo/SVM-python 借鉴sklearn的代码构架,整体功能实现在SVM类中,包括各种类属性,以及常用的模型训练函数 SVM.fit(x,y,iterations) ,以及预测函数 SVM.predict(x) , 类输入参数 kernal: 默认:线性

    2023年04月17日
    浏览(88)
  • 南京邮电大学数据结构实验一(线性表的基本运算及多项式的算术运算)(代码篇)

    小伙伴们要多多体会,不要全部借鉴哦!

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包