Hive执行计划

这篇具有很好参考价值的文章主要介绍了Hive执行计划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。

使用语法如下:

explain query;

在 hive cli 中输入以下命令(hive 2.3.7):

explain select sum(id) from test1;

得到结果:

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: test1
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: id (type: int)
              outputColumnNames: id
              Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: sum(id)
                mode: hash
                outputColumnNames: _col0
                Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  sort order:
                  Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col0 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: sum(VALUE._col0)
          mode: mergepartial
          outputColumnNames: _col0
          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

我们将上述结果拆分看,先从最外层开始,包含两个大的部分:

  1. stage dependencies:各个stage之间的依赖性

  2. stage plan:各个stage的执行计划

先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。

再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:

  1. Map Operator Tree:MAP端的执行计划树

  2. Reduce Operator Tree:Reduce端的执行计划树

这两个执行计划树里面包含这条sql语句的 operator:

  1. TableScan:表扫描操作,map端第一个操作肯定是加载表,所以就是表扫描操作,常见的属性:

    • alias:表名称

    • Statistics:表统计信息,包含表中数据条数,数据大小等

  2. Select Operator:选取操作,常见的属性 :

    • expressions:需要的字段名称及字段类型

    • outputColumnNames:输出的列名称

    • Statistics:表统计信息,包含表中数据条数,数据大小等

  3. Group By Operator:分组聚合操作,常见的属性:

    • aggregations:显示聚合函数信息

    • mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合

    • keys:分组的字段,如果没有分组,则没有此字段

    • outputColumnNames:聚合之后输出列名

    • Statistics:表统计信息,包含分组聚合之后的数据条数,数据大小等

  4. Reduce Output Operator:输出到reduce操作,常见属性:

    • sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +-  排序的列为两列,第一列为正序,第二列为倒序

  5. Filter Operator:过滤操作,常见的属性:

    • predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)

  6. Map Join Operator:join 操作,常见的属性:

    • condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2

    • keys: join 的条件字段

    • outputColumnNames:join 完成之后输出的字段

    • Statistics:join 完成之后生成的数据条数,大小等

  7. File Output Operator:文件输出操作,常见的属性

    • compressed:是否压缩

    • table:表的信息,包含输入输出文件格式化方式,序列化方式等

  8. Fetch Operator 客户端获取数据操作,常见的属性:

    • limit,值为 -1 表示不限制条数,其他值为限制的条数。

定位产生数据倾斜的代码段

数据倾斜大多数都是大 key 问题导致的。

如何判断是大 key 导致的问题,可以通过下面方法:

1. 通过时间判断

        如果某个 reduce 的时间比其他 reduce 时间长的多,如下图,大部分 task 在 1 分钟之内完成,只有 r_000000 这个 task 执行 20 多分钟了还没完成。

Hive执行计划,hive

定位 SQL 代码

确定任务卡住的 stage

  • 通过 jobname 确定 stage:
    一般 Hive 默认的 jobname 名称会带上 stage 阶段,如下通过 jobname 看到任务卡住的为 Stage-4:

Hive执行计划,hive
 

  • 如果 jobname 是自定义的,那可能没法通过 jobname 判断 stage。需要借助于任务日志:
    找到执行特别慢的那个 task,然后 Ctrl+F 搜索 “CommonJoinOperator: JOIN struct” 。Hive 在 join 的时候,会把 join 的 key 打印到日志中。如下:

Hive执行计划,hive

上图中的关键信息是:struct<_col0:string, _col1:string, _col3:string>

这时候,需要参考该 SQL 的执行计划。通过参考执行计划,可以断定该阶段为 Stage-4 阶段

Hive执行计划,hive

2. 确定 SQL 执行代码

确定了执行阶段,即 Stage-4 阶段。通过执行计划,则可以判断出是执行哪段代码时出现了倾斜。还是从此图,这个 Stage-4 阶段中进行连接操作的表别名是 d:

Hive执行计划,hive

就可以推测出是在执行下面红框中代码时出现了数据倾斜,因为这行的表的别名是 d:

Hive执行计划,hive


以上仅列举了4个我们生产中既熟悉又有点迷糊的例子,explain 还有很多其他的用途,如查看stage的依赖情况、hive 调优等,小伙伴们可以自行尝试。文章来源地址https://www.toymoban.com/news/detail-825924.html

到了这里,关于Hive执行计划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hive执行计划之只有map阶段SQL性能分析和解读

    目录 目录 概述 1.不带函数操作的select-from-where型简单SQL 1.1执行示例 1.2 运行逻辑分析 1.3 伪代码解释 2.带普通函数和运行操作符的普通型SQL执行计划解读 2.1 执行计划解读 2.2 伪代码解释逻辑 可能所有的SQLboy刚接触SQL语句的时候都是select xxx from xxx where xxx。在hive中,我们把这

    2024年02月08日
    浏览(51)
  • hive设置本地执行方式

    假如hive中的SQL语句执行时间太长,可以设置本地执行方式,设置本地执行模式可以优化执行速度,数据量小的时候,使用本地模式:。 方式一:(z) 在hive的配置文件 hive-env.sh中将一些配置注释解开 在SQL绘画中执行一下语句: 方式二:(Y) 以上这些配置,都可以写在 hive 的

    2024年02月12日
    浏览(33)
  • 【hive-design】hive架构详解:描述了hive架构,hive主要组件的作用、hsql在hive执行过程中的底层细节、hive各组件作用

    本文主要讨论了 描述了hive架构,hive主要组件的作用 详细描述了hsql在hive执行过程中的底层细节 描述了hive各组件作用 架构图: 如上图表达了hive的主要组件和以及与hadoop的交互: 主要的hive组件: UI :用户提交接口,用于用户提交查询和其他操作等。 Driver :接收查询的组件

    2024年02月04日
    浏览(43)
  • 大数据 Hive - 实现SQL执行

    MapReduce的出现大大简化了大数据编程的难度,使得大数据计算不再是高不可攀的技术圣殿,普通工程师也能使用MapReduce开发大数据程序。 但是对于经常需要进行大数据计算的人,比如从事研究商业智能(BI)的数据分析师来说,他们通常使用SQL进行大数据分析和统计,MapRed

    2024年02月02日
    浏览(43)
  • Hive的安装及集成Tez为执行引擎

    HIVE3 配置文档 注意: ① 要求Hadoop必须是可用的 (非HA) ② 要求Mysql能够链接 1.上传文件并解压重命名 tar -zxvf apache-hive-3.1.2-bin.tar.gz mv apache-hive-3.1.2-bin hive-3.1.2 2.配置环境变量 3.配置HIVE相关配置文件 添加如下内容: 上传Mysql驱动到HIVE的lib目录下 在Mysql中创建hive数据库并设

    2024年02月04日
    浏览(35)
  • 【Hive】Hive在调用执行MapReduce进程时报错:FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.

    今天,在测试Hive时,碰到了以下错误: 从报错的内容上看,应该是调用MapReduce时出现了错误。 尽管查看日志,也没有明确的指出出现错误的原因: 于是,我便想到了用Hadoop来执行MapReduce来测试MapReduce的功能是否正常: 执行以上命令,发现调用MapReduce时确实出现了问题: 根

    2024年02月03日
    浏览(43)
  • Hive 中执行 SQL语句 报错 :FAILED: SemanticException org.apache.hadoop.hive.ql.metadata.HiveException: java.

    在命令输入 hive 启动后: 解决方案: **错误原因:**服务端未开启服务,在hive服务端使用命令:hive --service metastore 然后再启动hive , 就可以正常使用sql语句了。 **其他原因:**有的是mysql没有启动,下面有完整的hive 启动流程 启动hive 流程(很多问题往往是少了步骤导致的)

    2024年02月15日
    浏览(53)
  • 在Hive/Spark上执行TPC-DS基准测试 (PARQUET格式)

    在上一篇文章:《在Hive/Spark上运行执行TPC-DS基准测试 (ORC和TEXT格式)》中,我们介绍了如何使用 hive-testbench 在Hive/Spark上执行TPC-DS基准测试,同时也指出了该项目不支持parquet格式。 如果我们想要生成parquet格式的测试数据,就需要使用其他工具了。本文选择使用另外一个开源

    2024年02月12日
    浏览(70)
  • Hive:聚合函数、GROUP BY、ORDER BY、LIMIT、执行顺序和JOIN、函数

    1.聚合函数 常见的聚合函数: Count、Sum、Max、Min和Avg 特点:不管原始数据多少条,聚合之后只有一条 Count(column)返回某列的行数,不包括NULL值 2.GROUP BY select中的字段要么是GROUP BY字段,要么是被聚合函数应用的字段 2.HAVING WHERE中无法出现聚合函数,所以有了HAVING WHERE是分组前

    2024年02月07日
    浏览(49)
  • 【SparkSQL】SparkSQL的运行流程 & Spark On Hive & 分布式SQL执行引擎

    【大家好,我是爱干饭的猿,本文重点介绍、SparkSQL的运行流程、 SparkSQL的自动优化、Catalyst优化器、SparkSQL的执行流程、Spark On Hive原理配置、分布式SQL执行引擎概念、代码JDBC连接。 后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】 上一篇

    2024年02月04日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包