OpenCV识别人脸案例实战

这篇具有很好参考价值的文章主要介绍了OpenCV识别人脸案例实战。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

使用级联函数

OpenCV识别人脸案例实战,计算机视觉,opencv,python,人工智能,计算机视觉,矩阵

基本流程

OpenCV识别人脸案例实战,计算机视觉,opencv,python,人工智能,计算机视觉,矩阵

函数介绍

在OpenCV中,人脸检测使用的是cv2.CascadeClassifier.detectMultiScale()函数,它可以检测出图片中所有的人脸。该函数由分类器对象调用,其语法格式为:

objects = cv2.CascadeClassifier.detectMultiScale( image[, scaleFactor[,

 minNeighbors[, flags[, minSize[, maxSize]]]]] )

式中各个参数及返回值的含义为:

  • image:待检测图像,通常为灰度图像。
  • scaleFactor:表示在前后两次相继的扫描中,搜索窗口的缩放比例。
  • minNeighbors:表示构成检测目标的相邻矩形的最小个数。默认情况下,该值为3,意味着有3个以上的检测标记存在时,才认为人脸存在。如果希望提高检测的准确率,可以将该值设置得更大,但同时可能会让一些人脸无法被检测到。
  • flags:该参数通常被省略。在使用低版本OpenCV(OpenCV 1.X版本)时,它可能会被设置为CV_HAAR_DO_CANNY_PRUNING,表示使用Canny边缘检测器来拒绝一些区域。
  • minSize:目标的最小尺寸,小于这个尺寸的目标将被忽略。
  • maxSize:目标的最大尺寸,大于这个尺寸的目标将被忽略。如果maxSize和minSize大小一致,表示仅在一个尺度上查找目标。通常情况下,将该可选参数省略即可。

objects:返回值,目标对象的矩形框向量组。该值是一组矩形信息,包含了每个检测到的人脸所对应矩形框的(x方向位置、y方向位置、宽度、高度)信息。

代码示例

# -*- coding: utf-8 -*-
"""
Created on Sat Feb 17 21:09:07 2024

@author: 李立宗

公众号:计算机视觉之光

知识星球:计算机视觉之光

"""

import cv2
# ===============1 原始图像处理====================
image = cv2.imread('manyPeople.jpg')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# ================2 加载分类器========================
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# =================3 人脸检测========================
faces = faceCascade.detectMultiScale(
    gray,
    scaleFactor = 1.04,
    minNeighbors = 18,
    minSize = (8,8))
# ===============4 打印输出的实现=====================
print("发现{0}张人脸!".format(len(faces)))
print("其位置分别是:")
print(faces)
# ==================5 标注人脸及显示=======================
for(x,y,w,h) in faces:
  cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2) 
cv2.imshow("result",image)
cv2.waitKey(0)
cv2.destroyAllWindows()

检测结果:

OpenCV识别人脸案例实战,计算机视觉,opencv,python,人工智能,计算机视觉,矩阵

学习参考  

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

参考文献

1、OpenCV轻松入门
李立宗,OpenCV轻松入门,电子工业出版社,2023

OpenCV识别人脸案例实战,计算机视觉,opencv,python,人工智能,计算机视觉,矩阵


2、计算机视觉40例
李立宗,计算机视觉40例,电子工业出版社,2022

OpenCV识别人脸案例实战,计算机视觉,opencv,python,人工智能,计算机视觉,矩阵文章来源地址https://www.toymoban.com/news/detail-826115.html

到了这里,关于OpenCV识别人脸案例实战的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【OpenCV】OpenCV:计算机视觉的强大工具库

    摘要   OpenCV是一个广泛应用于计算机视觉领域的开源工具库,为开发者提供了丰富的图像处理和计算机视觉算法。本文将介绍OpenCV的功能和应用领域,并探讨它在实践中的重要性和前景。 📕作者简介: 热爱跑步的恒川 ,致力于C/C++、Java、Python等多编程语言,热爱跑步,

    2024年02月03日
    浏览(48)
  • 计算机视觉(OpenCV+TensorFlow)

    本系列文章是OpenCV系列文章的第三篇,仍然跟随上篇内容主要聚焦于图像的一些操作 在通常情况下我们使用大小恒定的图像。但在某些情况下,我们需要使用不同分辨率的同幅图像,例如,在搜索图像中的某些内容比如脸部信息时,并不确定该内容在图像中占据的大小。这种

    2024年02月05日
    浏览(51)
  • 计算机视觉:OpenCV相机标定

    针孔照相机模型是一种经典的相机模型,它将相机视为一个针孔,将场景中的点投影到成像平面上。在这个模型中,相机的 内参和外参 描述了相机的几何形状和相机的姿态。 相机的 内参矩阵 描述了相机的内部几何形状,包括相机的焦距、像素尺寸和像素坐标原点。相机的

    2024年01月19日
    浏览(67)
  • OpenCV第 1 课 计算机视觉和 OpenCV 介绍

      我们人类可以通过眼睛看到五颜六色的世界,是因为人眼的视觉细胞中存在分别对红、绿、蓝敏感的 3 种细胞。其中的光感色素根据光线的不同进行不同比例的分解,从而让我们识别到各种颜色。   对人工智能而言,学会“ 看 ”也是非常关键的一步。那么机器人是如

    2024年01月24日
    浏览(50)
  • 【计算机视觉 · OpenCV】使用 OpenCV 调用手机摄像头

    Droidcam 是一款可以将手机变成网络摄像头的工具,我们可以利用 Droidcam 让 OpenCV 拥有调用手机摄像头的能力。 2.1 安装 DroidCam 在手机和电脑上分别安装 DroidCam 的客户端和服务端 下载地址:https://pan.baidu.com/s/1DrBn3P1Bx-SXa4d6oziifA?pwd=gr1o 提取码:gr1o 2.2 测试连接状态 手机和电脑需

    2024年02月09日
    浏览(52)
  • 【计算机视觉】---OpenCV实现物体追踪

    OpenCV中的物体追踪算法基于视觉目标跟踪的原理。物体追踪的目标是在连续的图像序列中定位和跟踪特定物体的位置。 在物体追踪中,我们需要对目标对象进行表示。通常使用边界框(bounding box)来表示目标的位置和大小。边界框是一个矩形区域,由左上角的坐标(x,y)和

    2024年02月08日
    浏览(51)
  • 【opencv】计算机视觉:实时目标追踪

    目录 前言 解析 深入探究 前言 目标追踪技术对于民生、社会的发展以及国家军事能力的壮大都具有重要的意义。它不仅仅可以应用到体育赛事当中目标的捕捉,还可以应用到交通上,比如实时监测车辆是否超速等!对于国家的军事也具有一定的意义,比如说导弹识别目标等

    2024年02月05日
    浏览(53)
  • 开源计算机视觉库OpenCV详解

    目录 1、概述 2、OpenCV详细介绍 2.1、OpenCV的起源 2.2、OpenCV开发语言 2.3、OpenCV的应用领域 3、OpenCV模块划分 4、OpenCV源码文件结构 4.1、根目录介绍 4.2、常用模块介绍 4.3、CUDA加速模块 5、OpenCV配置以及Visual Studio使用OpenCV 6、关于Lena图片 7、OpenCV和OpenGL的区别 8、OpenCV与YOLO的区别

    2024年02月10日
    浏览(79)
  • 【opencv】计算机视觉基础知识

    目录 前言 1、什么是计算机视觉 2、图片处理基础操作 2.1 图片处理:读入图像 2.2 图片处理:显示图像 2.3 图片处理:图像保存 3、图像处理入门基础 3.1 图像成像原理介绍 3.2 图像分类 3.2.1 二值图像 3.2.2灰度图像 3.2.3彩色图像(RGB) 4、像素处理操作 4.1 读取像素 4.2 修改像素

    2024年02月04日
    浏览(66)
  • 【计算机视觉】基于OpenCV计算机视觉的摄像头测距技术设计与实现

    在当今技术日益进步的时代,计算机视觉已成为我们生活中不可或缺的一部分。从智能监控到虚拟现实,计算机视觉技术的应用范围日益广泛。在这篇博客中,我们将探索一个特别实用的计算机视觉案例:使用OpenCV实现摄像头测距。这一技术不仅对专业人士有用,也为编程爱

    2024年02月04日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包