如何学习和规划类似ChatGPT这种人工智能(AI)相关技术

这篇具有很好参考价值的文章主要介绍了如何学习和规划类似ChatGPT这种人工智能(AI)相关技术。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:

  1. 学习基础知识

    • 学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。
    • 数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。
  2. 掌握机器学习和深度学习

    • 了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。
    • 学习使用常见的深度学习框架,如TensorFlow或PyTorch。
  3. 掌握自然语言处理(NLP)

    • 学习NLP的基础知识,包括词嵌入、词性标注、命名实体识别等。
    • 熟悉常见的NLP任务和模型,如情感分析、命名实体识别和机器翻译。
  4. 了解生成式模型

    • 研究生成式模型,了解它们如何生成文本、图像或音频等内容。
    • 学习使用生成式模型进行文本生成,如循环神经网络(RNN)或变换器模型(Transformer)。
  5. 实践项目和竞赛

    • 参与开源项目或竞赛,如Kaggle比赛,以应用所学知识并获得实践经验。
    • 在构建自己的项目时,不断尝试解决现实世界中的问题,这将帮助你深入理解和应用所学概念。
  6. 持续学习和跟进

    • 人工智能领域发展迅速,持续学习和跟进最新的技术和研究成果至关重要。
    • 阅读学术论文、关注领域内的顶尖会议和期刊,以及参与相关的在线社区和讨论。

记住,学习人工智能是一个持续的过程,需要不断地学习、实践和探索。通过坚持不懈地努力和充分利用资源,你将逐渐掌握类似ChatGPT这种AI相关技术。

制作一个简单的实例:

这里有一个简单的案例,展示了如何使用Python和TensorFlow来实现一个简单的文本生成器。

假设我们想要创建一个能够生成类似ChatGPT的简单文本生成器。我们可以使用基于循环神经网络(RNN)的字符级别语言模型来实现这个功能。

import tensorflow as tf
import numpy as np
import os
import time

# 读取文本文件
path_to_file = tf.keras.utils.get_file('shakespeare.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')

# 读取并为 py2 compat 解码
text = open(path_to_file, 'rb').read().decode(encoding='utf-8')

# 文本长度是指文本中的字符个数
print ('文本长度: {} 个字符'.format(len(text)))

# 看一看文本中的前 250 个字符
print(text[:250])

# 文本中的非重复字符
vocab = sorted(set(text))
print ('{} 个独特的字符'.format(len(vocab)))

# 创建从非重复字符到索引的映射
char2idx = {u:i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)

text_as_int = np.array([char2idx[c] for c in text])

# 显示文本首 13 个字符的整数映射
print('{')
for char,_ in zip(char2idx, range(20)):
    print('  {:4s}: {:3d},'.format(repr(char), char2idx[char]))
print('  ...\n}')

# 显示文本首 13 个字符的整数映射
print('{} ----字符映射为整数----> {}'.format(repr(text[:13]), text_as_int[:13]))

# 设定每个输入句子长度的最大值
seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)

# 创建训练样本 / 目标
char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)

sequences = char_dataset.batch(seq_length+1, drop_remainder=True)

def split_input_target(chunk):
    input_text = chunk[:-1]
    target_text = chunk[1:]
    return input_text, target_text

dataset = sequences.map(split_input_target)

# 批大小
BATCH_SIZE = 64
BUFFER_SIZE = 10000

dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)

# 字符集的长度
vocab_size = len(vocab)

# 嵌入的维度
embedding_dim = 256

# RNN 的单元数量
rnn_units = 1024

def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
    model = tf.keras.Sequential([
        tf.keras.layers.Embedding(vocab_size, embedding_dim,
                                  batch_input_shape=[batch_size, None]),
        tf.keras.layers.GRU(rnn_units,
                            return_sequences=True,
                            stateful=True,
                            recurrent_initializer='glorot_uniform'),
        tf.keras.layers.Dense(vocab_size)
    ])
    return model

model = build_model(
    vocab_size=len(vocab),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units,
    batch_size=BATCH_SIZE)

for input_example_batch, target_example_batch in dataset.take(1):
    example_batch_predictions = model(input_example_batch)
    print(example_batch_predictions.shape, "# (batch_size, sequence_length, vocab_size)")

model.summary()

sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)
sampled_indices = tf.squeeze(sampled_indices,axis=-1).numpy()

print("Input: \n", repr("".join(idx2char[input_example_batch[0]])))
print()
print("Next Char Predictions: \n", repr("".join(idx2char[sampled_indices ])))

def loss(labels, logits):
    return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)

example_batch_loss  = loss(target_example_batch, example_batch_predictions)
print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)")
print("scalar_loss:      ", example_batch_loss.numpy().mean())

model.compile(optimizer='adam', loss=loss)

# 检查点保存至的目录
checkpoint_dir = './training_checkpoints'
# 检查点的文件名
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_prefix,
    save_weights_only=True)

EPOCHS=10

history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
这个示例使用了莎士比亚的一部分文本来训练模型。你可以根据自己的需求和兴趣来选择训练文本,并调整模型的参数以获取更好的结果。

抖动的声音:dilo_Abel

bilibili视频:dilo_Abel的个人空间-dilo_Abel个人主页-哔哩哔哩视频文章来源地址https://www.toymoban.com/news/detail-826171.html

到了这里,关于如何学习和规划类似ChatGPT这种人工智能(AI)相关技术的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能伦理与城市规划的结合:如何让AI技术在城市规划中为人类创造更好的生活环境...

    随着人工智能技术的不断发展,它已经成为了许多行业中的重要驱动力。在城市规划领域,人工智能技术的应用也越来越广泛。然而,在人工智能技术在城市规划中发挥更大作用之前,我们需要关注人工智能伦理问题,确保其在城市规划中为人类创造更好的生活环境。 本文将

    2024年02月19日
    浏览(60)
  • 通用人工智能技术(深度学习,大模型,Chatgpt,多模态,强化学习,具身智能)

    目录 前言 1.通用人工智能 1.1 生物学分析 1.2具身智能 1.2.1当前的人工智能的局限 1.2.2 具身智能实现的基础 1.2.3 强化学习(决策大模型) 2.结论 往期文章 参考文献       目前的人工智能实质上只是强人工智能,或者说单个领域的通用人工智能。比方说Chatgpt它属于自然语言

    2024年02月07日
    浏览(82)
  • 【大厂AI课学习笔记】【2.1 人工智能项目开发规划与目标】(7)特征工程的基本方法

    今天来学习特征工程的基本方法。 基本方法包括:特征选择(Feature Selection)、特征提取(Feature Extraction)和特征构建(Feature Construction)。 从给定的特征集合中选出相关特征子集的过程。 去除无关特征,降低特征学习难度,让模型简单,降低计算复杂度。 抛弃这部分特征

    2024年02月22日
    浏览(47)
  • 如何开始学习人工智能?人工智能入门教程

    你想要了解人工智能的基本原理和应用,但面对庞大的知识体系和众多的学习资源,你可能感到有些迷茫。不用担心!作为从事人工智能多年的我,今天将为你提供一条通俗易懂的学习路径,帮助你正确入门人工智能。 第一步:打下基础 在入门人工智能前,咱们先要具备了

    2024年02月11日
    浏览(52)
  • 如何零基础学习“人工智能”?

    人工智能(AI)是近年来快速发展的领域之一,它已经开始改变我们的生活和工作方式。 人工智能(AI)是一项旨在使计算机系统能够执行以前需要人类智力才能完成的任务的技术。AI可以用来解决许多问题,包括语音识别、图像处理、自然语言处理和机器翻译等。它已经开始

    2024年02月07日
    浏览(48)
  • 如何学习人工智能AI技术

    目录 1.基础知识准备 2.软件环境 3.理论学习  4.常见人工智能技术 5.样本库 5.1 图像识别与计算机视觉 5.2自然语言处理 5.3语音识别与合成 5.4其他领域 6.算力        学习人工智能是一项系统性的任务,涉及到理论知识、编程技能、算法理解、项目实践等多个层面。下面是一个

    2024年04月29日
    浏览(57)
  • 人工智能的深度学习如何入门

    人工智能深度学习近年来成为热门的技术领域,被广泛应用于许多领域,如自然语言处理、图像识别、机器翻译等。学习人工智能深度学习需要具备一定的数学和编程基础,但对于初学者来说,并不需要过于复杂的数学和编程知识。本文将介绍人工智能深度学习的基本概念和

    2024年03月27日
    浏览(58)
  • 人工智能该如何学习?详细的AI学习

    英杰社区 https://bbs.csdn.net/topics/617804998        OpenAI最近发布了一款名为ChatGPT的聊天机器人模型,它受到了广泛的关注和赞誉。ChatGPT以一种更贴近人类对话方式进行交互,可以回答问题、承认错误、挑战不正确的前提、拒绝不适当的请求等。它提供高质量的回答,并且与用

    2024年02月08日
    浏览(54)
  • 人工智能与教育:如何提高学习效果

    人工智能(Artificial Intelligence, AI)和教育领域的结合,正在改变我们如何学习和教育。随着计算机科学的发展,人工智能技术已经成为了教育领域中的一种重要工具,它可以帮助教师更好地理解学生的需求,并提高学习效果。在这篇文章中,我们将探讨人工智能如何改变教育,

    2024年02月19日
    浏览(47)
  • 深度学习与人工智能:如何搭建高效的机器学习平台

    深度学习和人工智能是当今最热门的技术趋势之一,它们在各个领域都取得了显著的成果。然而,在实际应用中,搭建一个高效的机器学习平台仍然是一项挑战性的任务。在本文中,我们将讨论如何搭建一个高效的机器学习平台,以及深度学习和人工智能在这个过程中所扮演

    2024年02月19日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包