神经网络--从0开始搭建全连接网络和CNN网络

这篇具有很好参考价值的文章主要介绍了神经网络--从0开始搭建全连接网络和CNN网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

前言: Hello大家好,我是Dream。 今天来学习一下如何从0开始搭建全连接网络和CNN网络,并通过实验简单对比一下两种神经网络的不同之处,本文目录较长,可以根据需要自动选取要看的内容~

说明:在此试验下,我们使用的是使用tf2.x版本,在jupyter环境下完成
在本文中,我们将主要完成以下四个任务:

  • 加载keras内置的mnist数据库

  • 自己搭建简单神经网络,并自选损失函数和优化方法

  • 搭建4层全连接神经网络,除输入层以外,各层神经元个数分别为1000,300,64,10,激活函数自选

  • 搭建CNN网络,要求有1个卷积层(32卷积核),1个池化层(2x2),1个卷积层(16卷积核),1个全局池化层(globalMaxPool),一个全连接输出层,激活函数自选

一、搭建4层全连接神经网络

加载keras内置的mnist数据库,搭建4层全连接神经网络,除输入层以外,各层神经元个数分别为1000,300,64,10,激活函数自选

1.调用库函数

import tensorflow as tf
import matplotlib.pyplot as plt
mnist = tf.keras.datasets.mnist
from tensorflow.keras.layers import Flatten,Dense,Dropout

2.选择模型,构建网络

搭建4层全连接神经网络,除输入层以外,各层神经元个数分别为1000,300,64,10

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# 选择模型,构建网络
model = tf.keras.models.Sequential()
model.add(Flatten(input_shape=(28, 28)))
# 各层神经元个数分别为1000,300,64,10
model.add(Dense(1000, activation='relu'))
model.add(Dense(300, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))  # 采用20%的dropout
model.add(Dense(10, activation='softmax'))  # 输出结果是10个类别,所以维度是10,最后一层用softmax作为激活函数

3.编译(使用交叉熵作为loss函数)

指明优化器、损失函数、准确率计算函数

# 编译(使用交叉熵作为loss函数),指明优化器、损失函数、准确率计算函数
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=[tf.keras.metrics.sparse_categorical_accuracy])

# 训练(训练10个epoch)
history = model.fit(x_train, y_train, epochs=10)

这里是训练的结果:
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

4.输出

输出测试集上的预测准确率

# 输出
scores = model.evaluate(x_test,y_test)
print(scores)
print("The accuracy of the model is %f" % scores[1])  #输出测试集上的预测准确率

这里是输出的结果:
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

5.画出图像

使用plt模块进行数据可视化处理

# 画出图像
plt.plot(history.history['loss'], color='red', label='Loss')
plt.legend(loc='best')
plt.title('Training Loss')
plt.show()

手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

6.结论

第一种神经网络准确率:0.976200

二、搭建CNN网络

要求有1个卷积层,1个池化层,1个全局池化层(globalMaxPool),一个全连接输出层,激活函数自选

1.调用库函数

import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_datasets as tfds
import math
from tensorflow.keras.layers import Conv2D,MaxPooling2D,GlobalMaxPooling2D,Flatten,Dense

2.调用数据集

加载keras内置的mnist数据库

# 调用数据集
dataset, metaset = tfds.load('mnist', as_supervised=True, with_info=True)
train_dataset, test_dataset = dataset['train'], dataset['test']

3.图片归一化

# 图片归一化
def normalize(images, labels):
    images = tf.cast(images, tf.float32)
    images /= 255
    return images, labels
train_dataset = train_dataset.map(normalize)
test_dataset = test_dataset.map(normalize)

4.选择模型,构建网络

构建出1个卷积层,1个池化层,1个全局池化层(globalMaxPool),一个全连接输出层

# 选择模型,构建网络
model = tf.keras.Sequential()

# 卷积层
model.add(Conv2D(32, (5, 5), padding='same', activation=tf.nn.relu, input_shape=(28, 28, 1))),  

# 池化层 
model.add(MaxPooling2D((2, 2), strides=2)), 

# 全局池化层(globalMaxPool)
model.add(Conv2D(64, (5, 5), padding='same', activation=tf.nn.relu)),  # 卷积层
model.add(GlobalMaxPooling2D()),

 # 全连接输出层
model.add(Flatten()),#展平
model.add(Dense(512, activation=tf.nn.relu)),
model.add(Dense(10, activation=tf.nn.softmax))# 输出结果是10个类别,所以维度是10,最后一层用softmax作为激活函数

5.编译

指明优化器、损失函数、准确率计算函数

# 编译(使用交叉熵作为loss函数),指明优化器、损失函数、准确率计算函数
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
# 展示训练的过程
display(model.summary())

这里是输出的结果:
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

6.批量输入的样本个数

# 批量输入的样本个数
BATCH_SIZE = 64
num_train = metaset.splits['train'].num_examples
num_test = metaset.splits['test'].num_examples
train_dataset = train_dataset.repeat().shuffle(num_train).batch(BATCH_SIZE)
test_dataset = test_dataset.repeat().shuffle(num_test).batch(BATCH_SIZE)

7.训练

训练10个epoch

# 训练(训练10个epoch)
history = model.fit(train_dataset, epochs=10, steps_per_epoch=math.ceil(num_train / BATCH_SIZE))

这里是输出的结果:
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

8.输出

# 输出
test_loss, test_accuracy = model.evaluate(test_dataset, steps=math.ceil(num_test / BATCH_SIZE))
print(test_loss, test_accuracy)

这里是输出的结果:
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

9.画出图像

使用plt模块进行数据可视化处理

# 画出图像
plt.plot(history.history['loss'], color='red', label='Loss')
plt.legend(loc='best')
plt.title('Training Loss')
plt.show()

这里是输出的结果:
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

10.结论

第二种神经网络准确率:0.993232

三、两种网络对比

第一种神经网络准确率:0.976200 第二种神经网络准确率:0.993232
总结: 通过对比我们可以发现CNN卷积神经网络相对于传统神经网络NN准确率会高一些,由卷积的操作可知,输出图像中的任何一个单元,只跟输入图像的一部分有关系。而传统神经网络中,由于都是全连接,所以输出的任何一个单元,都要受输入的所有的单元的影响。这样无形中会对图像的识别效果大打折扣,因此CNN在此种方面会更具优势

四、源码获取

关注此公众号:人生苦短我用Pythons,回复 神经网络实验获取源码,快点击我吧

🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络
手动实现神经网络全连接,神经网络,Dream的茶话会,神经网络,cnn,网络

最后,有任何问题,欢迎关注下面的公众号,获取第一时间消息、作者联系方式及每周抽奖等多重好礼! ↓↓↓文章来源地址https://www.toymoban.com/news/detail-826439.html

到了这里,关于神经网络--从0开始搭建全连接网络和CNN网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 从零使用TensorFlow搭建CNN(卷积)神经网络

    🍅 写在前面 👨‍🎓 博主介绍:大家好,这里是hyk写算法了吗,一枚致力于学习算法和人工智能领域的小菜鸟。 🔎个人主页:主页链接(欢迎各位大佬光临指导) ⭐️近期专栏:机器学习与深度学习                        LeetCode算法实例 本节内容主要向大家

    2023年04月22日
    浏览(45)
  • umicv cv-summary1-全连接神经网络模块化实现

    全连接神经网络模块化实现 Linear与Relu单层实现 LossLayer实现 多层神经网络 不同梯度下降方法 Dropout层 今天这篇博文针对Assignment3的全连接网络作业,对前面学习的内容进行一些总结 在前面的作业中我们建立神经网络的操作比较简单,也不具有模块化的特征,在A3作业中,引导

    2024年02月08日
    浏览(42)
  • 入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

    1.1 问题导入 如图所示,数字五的图片作为输入,layer01层为输入层,layer02层为隐藏层,找出每列最大值对应索引为输出层。根据下图给出的网络结构搭建本案例用到的全连接神经网络 1.2 手写字数据集MINST 如图所示,MNIST数据集是机器学习领域中非常经典的一个数据集,由6

    2024年02月03日
    浏览(46)
  • 基于Tensorflow搭建卷积神经网络CNN(水果识别)保姆及级教程

    项目介绍 TensorFlow2.X 搭建卷积神经网络(CNN),实现水果识别。搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。 网络结构: 开发环境: python==3.7 tensorflow==2.3 数据集: 图片

    2024年02月06日
    浏览(57)
  • Matlab深度学习入门实例:从0搭建卷积神经网络CNN(附完整代码)

    网上已具有大量卷积神经网络的讲解,故本文不在对此赘述,这篇文章针对已了解CNN基础结构和原理者,以一个例子搭建一个简单的卷积神经网络,作为正式迈入深度学习的第一步。 我们以深度学习最经典的案例——手写数字的识别,和一种经典的CNN——LeNet进行本次学习。

    2024年02月01日
    浏览(56)
  • 【AI】深度学习——前馈神经网络——全连接前馈神经网络

    前馈神经网络(Feedforward Neural Network,FNN)也称为多层感知器(实际上前馈神经网络由多层Logistic回归模型组成) 前馈神经网络中,各个神经元属于不同的层 每层神经元接收前一层神经元的信号,并输出到下一层 输入层:第0层 输出层:最后一层 隐藏层:其他中间层 整个网络

    2024年04月12日
    浏览(109)
  • 神经网络:全连接层

    在计算机视觉中,全连接层(也称为密集连接层或线性层)是一种常用的神经网络层,用于将输入数据与模型的参数进行线性组合,并产生输出结果。 作用: 全连接层在神经网络中起到特征映射和非线性变换的作用。它通过将输入数据与权重矩阵进行线性组合,并通过激活

    2024年02月10日
    浏览(37)
  • DNN(全连接神经网络)

    DNN网络一般分为三层 1.输入层 2.隐藏层 3.输出层 简单网络如下: 从第二层开始,每一个神经元都会获得它上一层所有神经元的结果。即每一个 y = wx + b的值。 具体分析如下: 如此下去就会非常可能出现了一个问题------就是越靠后的神经元获得的y值会非常大,试想一下,如果

    2023年04月12日
    浏览(37)
  • 什么是全连接神经网络?

    解释全连接神经网络之前我们首先需要了解什么是神经网络?   人工神经网络(Artificial Neural Network, ANN)简称神经网络,可以对一组输入信号和一组输出信号之间的关系进行模拟,是机器学习和认知科学领域中一种模仿生物神经网络的结构和功能的数学模型。用于对函数进

    2024年02月10日
    浏览(39)
  • CNN(卷积神经网络)的实现过程详解

        在图像处理领域,CNN(卷积神经网络)处于绝对统治地位,但对于CNN具体是如何用神经网络实现的,能找到的介绍要么是一大堆数学公式,要么是大段晦涩的文字说明,读起来很是辛苦,想写好一片完整的而且有深度的文章出来非常难,所以本文适合入门的朋友对CNN的学习

    2024年02月15日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包