PyTorch-线性回归

这篇具有很好参考价值的文章主要介绍了PyTorch-线性回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

已经进入大模微调的时代,但是学习pytorch,对后续学习rasa框架有一定帮助吧。

<!--  给出一系列的点作为线性回归的数据,使用numpy来存储这些点。 -->
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
                    [9.779], [6.182], [7.59], [2.167], [7.042],
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
                    [3.366], [2.596], [2.53], [1.221], [2.827],
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

<!--  转化tensor格式。 -->
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)

<!--  这里的nn.Linear表示的是 y=w*x b,里面的两个参数都是1,表示的是x是1维,y也是1维。当然这里是可以根据你想要的输入输出维度来更改的。 -->
class linearRegression(nn.Module):
    def __init__(self):
        super(linearRegression, self).__init__()
        self.linear = nn.Linear(1, 1)  # input and output is 1 dimension

    def forward(self, x):
        out = self.linear(x)
        return out
model = linearRegression()

<!-- 定义loss和优化函数,这里使用的是最小二乘loss,之后我们做分类问题更多的使用的是cross entropy loss,交叉熵。优化函数使用的是随机梯度下降,注意需要将model的参数model.parameters()传进去让这个函数知道他要优化的参数是那些。 -->
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

<!-- 开始训练 -->
num_epochs = 1000
for epoch in range(num_epochs):
    inputs = Variable(x_train)
    target = Variable(y_train)
 
    # forward
    out = model(inputs) # 前向传播
    loss = criterion(out, target) # 计算loss
 
    # backward
    optimizer.zero_grad() # 梯度归零
    loss.backward() # 反向传播
    optimizer.step() # 更新参数
 
    if (epoch 1) % 20 == 0:
         print(f'Epoch[{epoch+1}/{num_epochs}], loss: {loss.item():.6f}')

<!--训练完成之后我们就可以开始测试模型了-->
model.eval()
predict = model(Variable(x_train))
predict = predict.data.numpy()

<!-- 显示图例 -->
fig = plt.figure(figsize=(10, 5))
plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data')
plt.plot(x_train.numpy(), predict, label='Fitting Line')

plt.legend() 
plt.show()

<!-- 保存模型 -->
torch.save(model.state_dict(), './linear.pth')

PyTorch-线性回归,python,pytorch,线性回归,python文章来源地址https://www.toymoban.com/news/detail-826715.html

到了这里,关于PyTorch-线性回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch学习——线性神经网络——1线性回归

    概要:线性神经网络是一种最简单的神经网络模型,它由若干个线性变换和非线性变换组成。线性变换通常表示为矩阵乘法,非线性变换通常是一个逐元素的非线性函数。线性神经网络通常用于解决回归和分类问题。         线性回归是一种常见的机器学习算法,用于建

    2024年02月15日
    浏览(45)
  • 用Pytorch实现线性回归模型

    前面已经学习过线性模型相关的内容,实现线性模型的过程并没有使用到Pytorch。 这节课主要是利用Pytorch实现线性模型。 学习器训练: 确定模型(函数) 定义损失函数 优化器优化(SGD) 之前用过Pytorch的Tensor进行Forward、Backward计算。 现在利用Pytorch框架来实现。 准备数据集

    2024年01月19日
    浏览(51)
  • 深度学习之用PyTorch实现线性回归

    1.1 epoch = 100时 1.2 epoch = 1000时   2.1 Adam优化器    2.2 Adamax优化器  3.1 lr = 0.05  3.2 lr = 0.1(loss函数结果发散) 1.1 问题  1.2 解决办法 代码中model.parameters()函数保存的是Weights和Bais参数的值。但是对于其他网络(非线性)来说这个函数可以用吗,里面也是保存的w和b吗?

    2024年02月14日
    浏览(48)
  • 深度学习之pytorch实现线性回归

    作用j进行线性变换 Linear(1, 1) : 表示一维输入,一维输出 优化器对象 9961 tensor(4.0927e-12, grad_fn=) 9962 tensor(4.0927e-12, grad_fn=) 9963 tensor(4.0927e-12, grad_fn=) 9964 tensor(4.0927e-12, grad_fn=) 9965 tensor(4.0927e-12, grad_fn=) 9966 tensor(4.0927e-12, grad_fn=) 9967 tensor(4.0927e-12, grad_fn=) 9968 tensor(4.0927e-12, grad_fn

    2024年02月19日
    浏览(38)
  • 【pytorch】使用pytorch构建线性回归模型-了解计算图和自动梯度

    在 PyTorch 中,计算图(Computational Graph)是一种用于表示神经网络运算的数据结构。每个节点代表一个操作,例如加法、乘法或激活函数,而边则代表这些操作之间的数据流动。 计算图的主要优点是可以自动进行微分计算。当你在计算图上调用 .backward() 方法时,PyTorch 会自动

    2024年01月16日
    浏览(47)
  • 【PyTorch】课堂测试一:线性回归的求解

    作者 🕵️‍♂️:让机器理解语言か 专栏 🎇:PyTorch 描述 🎨:PyTorch 是一个基于 Torch 的 Python 开源机器学习库。 寄语 💓:🐾没有白走的路,每一步都算数!🐾          这个是我们的第一次课堂测试,共有四个挑战,本测试需要你利用前面所学到的 PyTorch 知识,完成线

    2023年04月17日
    浏览(67)
  • pytorch手动实现一个简单的线性回归

    使用y = 5x + 20来构造数据 准备数据 计算预测值 计算损失 把参数的梯度置为0 进行反向传播 更新参数

    2024年02月16日
    浏览(46)
  • PyTorch深度学习实战 | 预测工资——线性回归

    通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 可以看出,这是一个用工作年限预

    2023年04月11日
    浏览(49)
  • 线性神经网路——线性回归随笔【深度学习】【PyTorch】【d2l】

    线性回归是显式解,深度学习中绝大多数遇到的都是隐式解。 3.1.1、PyTorch 从零实现线性回归 生成数据集及标签 d2l.plt.scatter(,,) ,使用d2l库中的绘图函数来创建散点图。 这个函数接受三个参数: features[:,1].detach().numpy() 是一个二维张量features的切片操作,选择了所有行的第二

    2024年02月15日
    浏览(61)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(八):线性回归

    线性函数如下: y ^ = w 1 x 1 + . . . + w d x d

    2024年02月14日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包