论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery

这篇具有很好参考价值的文章主要介绍了论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这篇文章是关于色彩恢复的一项工作,发表在 CVPR2023,其中之一的作者是 Michael S. Brown,这个老师是加拿大 York 大学的,也是 ISP 领域的大牛,现在好像也在三星研究院担任兼职,这个老师做了很多这种类似的工作,通过一些轻量模型,将一些数据转换过程中的变换关系进行拟合,然后再进行恢复,比如 RAW域 到 sRGB 域的转换,这篇文章是 wide RGB 到 sRGB 的转换

一般相机的 ISP 或者一些图像编辑软件,可以处理更为宽广的色域,也就是 wide-gamut,广色域基本涵盖了 90% 的可见光色彩空间,不过这些图像最终转换到标准色域 standard-RGB (sRGB) 的时候,由于标准色域空间 sRGB 只涵盖了 30% 的色彩空间,所以会有很多的截断及精度损失,这篇文章也是借助神经网络强大的隐式表达能力,这篇文章提出在进行色彩转换的时候,用一个轻量级的的 MLP 去记录转换时的截断像素值。这个 MLP 需要大概 2s 的时间训练,需要大概 23k 的存储空间,可以看到,这是一个类似在线拟合的过程,每转换一张图片,需要同步去训练一个 MLP 在线拟合这个色彩转换过程,然后后面需要再进行色彩恢复的时候,可以调用这个模型进行色彩恢复。

文章整体的思路还是比较直观简单的,可以分成两个阶段,第一个阶段是编码阶段,也就是从 wide gamut 到 standard gamut 的时候,需要同步训练一个 MLP; 第二个阶段可以认为是解码阶段,就是从 standard gamut 重新扩展成 wide gamut 的时候。

  • 编码阶段

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery,计算摄影与图像处理,论文阅读

  • 解码阶段

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery,计算摄影与图像处理,论文阅读

假设一张 wide gamut 的图像可以表示成 I P P ∈ R 3 × N \mathbf{I}_{PP} \in \mathbb{R}^{3 \times N} IPPR3×N,转换后的 sRGB 图像为 I s R G B \mathbf{I}_{sRGB} IsRGB,整个转换过程可以表示为:

I s R G B = g ( clip ( M I P P , m i n = 0 , m a x = 1.0 ) ) (1) \mathbf{I}_{sRGB} = g(\text{clip}(\mathbf{M}\mathbf{I}_{PP}, min=0, max=1.0)) \tag{1} IsRGB=g(clip(MIPP,min=0,max=1.0))(1)

M \mathbf{M} M 是一个色彩转换矩阵, I P P \mathbf{I}_{PP} IPP 表示广色域的图像,clip 是一个截断操作, g g g 表示 gamma 变换,可以看到,由于其中有一个 clip 的截断操作,所在这个变换是不可逆的,当从 sRGB 图像转换回 wide gamut 图像时,可以用下面的式子表示:

I C l i p e d P P = M − 1 g − 1 ( I s R G B ) (2) \mathbf{I}_{ClipedPP} =\mathbf{M}^{-1}g^{-1}(\mathbf{I}_{sRGB}) \tag{2} IClipedPP=M1g1(IsRGB)(2)

为了能从 I C l i p e d P P \mathbf{I}_{ClipedPP} IClipedPP 恢复得到真正的 I P P \mathbf{I}_{PP} IPP,文章提出用一个 MLP 网络来进行拟合。MLP 本身预测的是残差,整个恢复过程如下所示:

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery,计算摄影与图像处理,论文阅读

I ^ P P ( x ) = f θ ( x , I C l i p e d P P ( x ) ) + I C l i p e d P P ( x ) (3) \hat{\mathbf{I}}_{PP}(\mathbf{x}) = f_{\theta} (\mathbf{x}, \mathbf{I}_{ClipedPP}(\mathbf{x})) + \mathbf{I}_{ClipedPP}(\mathbf{x}) \tag{3} I^PP(x)=fθ(x,IClipedPP(x))+IClipedPP(x)(3)

其中, f θ ( x , I C l i p e d P P ( x ) ) f_{\theta} (\mathbf{x}, \mathbf{I}_{ClipedPP}(\mathbf{x})) fθ(x,IClipedPP(x)) 就是 MLP 网络预测的残差, I ^ P P ( x ) \hat{\mathbf{I}}_{PP}(\mathbf{x}) I^PP(x) 表示最终恢复的 wide gamut 的 RGB 值,网络的输入是一个五维的向量 ( x , y , R ′ , G ′ , B ′ ) (x, y, R', G', B') (x,y,R,G,B) ,文章中用了一个编码函数,对每个维度进行了编码,编码函数如下所示:

γ ( m ) = ( sin ⁡ ( 2 0 π m ) , cos ⁡ ( 2 0 π m ) , . . . , sin ⁡ ( 2 K − 1 π m ) , cos ⁡ ( 2 K − 1 π m ) ) (4) \gamma(m) = ( \sin(2^{0}\pi m), \cos(2^{0}\pi m), ..., \sin(2^{K-1}\pi m), \cos(2^{K-1}\pi m) ) \tag{4} γ(m)=(sin(20πm),cos(20πm),...,sin(2K1πm),cos(2K1πm))(4)

每个维度编码成一个 24 维的向量,5 个维度一共是 120 维的向量。最终的损失函数是一个 L 2 L_2 L2 的 loss

L g a m u t = ∑ x ∥ I ^ P P ( x ) − I P P ( x ) ∥ (5) \mathcal{L}_{gamut} = \sum_{\mathbf{x}} \left \| \hat{\mathbf{I}}_{PP}(\mathbf{x}) - \mathbf{I}_{PP}(\mathbf{x}) \right \| \tag{5} Lgamut=x I^PP(x)IPP(x) (5)

文章中也提到,训练的时候,不能只用 out-of-gamut 的像素值训练,out-of-gamut 和 in-gamut 都用上,模型拟合的效果最好,文章最后用了 20% 的 out-of-gamut 的像素,以及 2% 的 in-gamut 的像素,混合着训练。最后就是实验结果了。

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery,计算摄影与图像处理,论文阅读

这篇文章主要是为了解决色域转换时候的精度损失及截断问题,通过在线训练一个 MLP 网络,对转换过程进行拟合,文章整体的思路简单直观,效果从文章给的结果来看,比之前的一些方法要好。毕竟是每张图片都需要单独训练一个 MLP 网络,用效率换效果了。文章来源地址https://www.toymoban.com/news/detail-826944.html

到了这里,关于论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读】Generalized Focal Loss的解读。交叉熵、Focal Loss、Quality Focal Loss、Distribution Focal Loss

    论文链接:https://arxiv.org/pdf/2006.04388.pdf 已有方法中,单阶段密集检测器一般分为三个输出内容 : 检测框质量估计confidence: channel维度上占 1; 训练时正样本标签为当前grid_ceil对应的标签框和预测框的iou score、或者centerness score,负样本为0。 检测框box: channel维度上占4;分别

    2024年01月18日
    浏览(43)
  • 论文阅读——Loss odyssey in medical image segmentation

    Loss odyssey in medical image segmentation github:https://github.com/JunMa11/SegLossOdyssey 这篇文章回顾了医学图像分割中的20种不同的损失函数,旨在回答:对于医学图像分割任务,我们应该选择哪种损失函数? 首先是一张各类分割函数的图谱: 介绍函数之前先定义字母符号的含义: , 分别

    2024年02月04日
    浏览(50)
  • Perceptual Loss(感知损失)&Perceptual Losses for Real-Time Style Transferand Super-Resolution论文解读

    由于传统的L1,L2 loss是针对于像素级的损失计算,且L2 loss与人眼感知的图像质量并不匹配,单一使用L1或L2 loss对于超分等任务来说恢复出来的图像往往细节表现都不好。 现在的研究中,L2 loss逐步被人眼感知loss所取代。人眼感知loss也被称为perceptual loss(感知损失),它与MSE(

    2023年04月20日
    浏览(51)
  • [论文阅读]A ConvNet for the 2020s

    视觉识别的咆哮的20年代开始于ViTs的引入,它很快取代了卷积神经网络,成为最先进的图像分类模型。另一方面,一个原始的ViT在用于一般的比如目标识别和语义分割的计算机视觉任务的时候面临困难。层次Transformer(例如,Swin-Transformer),它重新引入了几个卷积神经网络先验

    2024年02月07日
    浏览(46)
  • Hopper: Interpretative Fuzzing for Libraries——论文阅读

    problem 1 :虽然目前最先进的fuzzers能够有效地生成输入,但是现有的模糊驱动程序仍然不能全面覆盖库的入口。(entries in libraries,库中的不同条目或入口点。包括调用库中的函数、使用库中的类等) problem 2 :大多数模糊驱动程序都是开发人员手工制作的,它们的质量取决于开

    2024年02月02日
    浏览(43)
  • 【论文阅读——Profit Allocation for Federated Learning】

    由于更为严格的数据管理法规,如《通用数据保护条例》(GDPR),传统的机器学习服务生产模式正在转向联邦学习这一范式。联邦学习允许多个数据提供者在其本地保留数据的同时,协作训练一个共享模型。推动联邦学习实际应用的关键在于如何将联合模型产生的利润公平地

    2024年04月13日
    浏览(52)
  • 论文阅读《Hierarchical Aggregation for 3D Instance Segmentation》

    Hierarchical Aggregation for 3D Instance Segmentation是一个用于实例分割的方法,他主要利用了点以及点集之间的空间关系,以此进行实例分割。大概步骤如下: 首先进行低带宽点汇集得到初步的实例以避免过度分割 之后进行动态带宽集合汇集以得到完整的实例 引入实例内网络进行去

    2024年02月04日
    浏览(50)
  • 【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation

    2023-RecSys https://github.com/Tokkiu/ECL 对比学习(CL)有利于对具有信息性自我监督信号的顺序推荐模型的训练。 现有的解决方案应用一般的顺序数据增强策略来生成正对,并鼓励它们的表示是不变的。 然而,由于用户行为序列的固有属性,一些增强策略,如项目替代,可能会导致

    2024年01月18日
    浏览(45)
  • 【论文阅读】Scaling Laws for Neural Language Models

    本文简要介绍 Scaling law 的主要结论 原文地址:Scaling Laws for Neural Language Models 个人认为不需要特别关注公式内各种符号的具体数值,而更应该关注不同因素之间的关系,比例等 Performance depends strongly on scale, weakly on model shape scale: 参数量 N N N , 数据量 D D D , 计算量 C C C shape: 模

    2024年02月16日
    浏览(47)
  • 【论文阅读】Resource Allocation for Text Semantic Communications

    这是一篇关于语义通信中资源分配的论文。全文共5页,篇幅较短。 语义通信在传输可靠性方面有着天然优势,而其中的资源分配更是保证语义传输可靠性和通信效率的关键所在,但目前还没有研究者探索该领域。为了填补这一空白,我们研究了语义领域的频谱效率,并重新

    2024年02月03日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包