linux下ffmpeg调用GPU硬件解码(VDPAU/VAAPI)保存文件

这篇具有很好参考价值的文章主要介绍了linux下ffmpeg调用GPU硬件解码(VDPAU/VAAPI)保存文件。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文讲解在linux下面,如何通过ffmpeg调用GPU硬件解码,并保存解码完的yuv文件。
其实,ffmpeg自带的例子hw_decode.c这个文件,就已经能满足要求了,因此,本文就尝试讲解以下hw_decode这个例子。hw_decode.c可以调用VDPAU硬件解码,也可以调用VAAPI硬件解码,下面依次讲解如何进行操作。

下载hw_decode.c文件

我是从网上直接下载ffmpeg源码,下载地址如下:https://ffmpeg.org/releases/ffmpeg-4.2.9.tar.bz2
我这里下载的是4.2.9的源码,然后解压缩之后,在ffmpeg-4.2.9/doc/examples/hw_decode.c路径,就保存了我们需要的hw_decode.c文件。

搭建开发环境

搭建开发环境分2种,一种是直接使用系统自带的软件源里面的软件包进行开发,另外一种就是自己重新编译ffmpeg并进行开发,这两种选一种就可以了。推荐使用软件源的软件包进行开发,因为相对简单一些。下面分别讲解如何操作。

使用软件源的软件包进行开发

需要安装的依赖项如下,我这里是deb系列安装方式。

sudo apt install libvdpau-dev libva-dev ffmpeg libavcodec-dev libavformat-dev libavutil-dev

编译, cd 到ffmpeg-4.2.9/doc/examples目录,执行如下命令

gcc hw_decode.c -lavcodec -lavutil -lavformat -o hw_decode

就可以得到hw_decode这个可执行文件。

自己编译ffmpeg进行开发

自己编译ffmpeg,首先要下载ffmpeg源码,下载地址如下:https://ffmpeg.org/releases/ffmpeg-4.2.9.tar.bz2。
然后解压缩,cd ffmpeg-4.2.9,然后进行configure配置,如果你想使用VDPAU解码,那么configure命令如下

./configure --enable-shared --enable-vdpau

如果你想使用vaapi解码,那么configure命令如下

./configure --enable-shared --enable-vaapi

如果你vdpau和vaapi都想使用,那么进行如下configure。

./configure --enable-shared --enable-vdpau --enable-vaapi

然后,这里可能会遇到问题,可能就是没有安装vdpau开发包,或者没有安装vaapi开发包导致的,输入如下命令安装就可以了。

sudo apt install libvdpau-dev libva-dev 

然后再进行configure操作。
之后,再进行如下操作:

make -j8 
make examples 
sudo make install

其中,make -j8是使用8线程进行ffmpeg编译。
make examples,就是把ffmpeg所有的例子都编译,这样在ffmpeg-4.2.9/doc/exmaples目录,就会生成hw_decode这个可执行文件。
sudo make install,会将ffmpeg的动态库安装到/usr/local/lib下面,可执行文件安装到/usr/local/bin下面,头文件安装到/usr/local/include目录下面。

运行hw_decode例子

cd 到生成hw_decode的目录,如果使用vdpau解码,那么执行如下命令,你需要将第2个参数的视频路径,替换成你的视频路径。

./hw_decode vdpau ~/视频/210329_06B_Bali_1080p_013.mp4  ./out.yuv

如果使用vaapi解码,那么需要使用如下命令:

./hw_decode vaapi ~/视频/210329_06B_Bali_1080p_013.mp4  ./out.yuv

同样,需要将第2个参数替换成你的视频路径。
有的显卡,需要添加环境变量LIBVA_DRIVER_NAME。比如景嘉微JM9系列显卡,需要使用如下命令:

LIBVA_DRIVER_NAME=jmgpu ./hw_decode vaapi ~/视频/210329_06B_Bali_1080p_013.mp4  ./out.yuv

检验out.yuv结果

ffplay -pix_fmt nv12 -s 1920x1080 out.yuv

如上所示,使用ffmpeg自带的播放器ffplay,然后-pix_fmt 指定yuv格式, -s指定分辨率,然后播放。
linux下ffmpeg调用GPU硬件解码(VDPAU/VAAPI)保存文件,linux,ffmpeg

hw_decode例子源码讲解

下面开始讲解代码,从main函数开始讲解。

int main(int argc, char *argv[])
{
    AVFormatContext *input_ctx = NULL;
    int video_stream, ret;
    AVStream *video = NULL;
    AVCodecContext *decoder_ctx = NULL;
    AVCodec *decoder = NULL;
    AVPacket packet;
    enum AVHWDeviceType type;
    int i;

    if (argc < 4) {
        fprintf(stderr, "Usage: %s <device type> <input file> <output file>\n", argv[0]);
        return -1;
    }

刚开始的一段,全是变量声明和定义,这些变量都是后面用的到的。然后if (argc < 4)这个判断,是用来判断使用方式的,下面的使用方式,正好是4个argc,第一个./hw_decode是程序名字,第2个参数vaapi表示使用的解码接口,第3个参数是视频路径,第4个参数是输出yuv路径。

./hw_decode vaapi ~/视频/210329_06B_Bali_1080p_013.mp4  ./out.yuv

如果argc < 4,那么提示使用方式,然后返回-1,程序结束。

    type = av_hwdevice_find_type_by_name(argv[1]);
    if (type == AV_HWDEVICE_TYPE_NONE) {
        fprintf(stderr, "Device type %s is not supported.\n", argv[1]);
        fprintf(stderr, "Available device types:");
        while((type = av_hwdevice_iterate_types(type)) != AV_HWDEVICE_TYPE_NONE)
            fprintf(stderr, " %s", av_hwdevice_get_type_name(type));
        fprintf(stderr, "\n");
        return -1;
    }

接下来,就是去寻找第2个参数对应的硬件解码类型,argv[1]就对应我们解码程序的参数"vdpau",或者"vaapi",如果找到了,就保存在变量type中,如果没找到,就通过一个while循环把支持的硬件类型列举,并打印出来,然后return -1程序退出。

    /* open the input file */
    if (avformat_open_input(&input_ctx, argv[2], NULL, NULL) != 0) {
        fprintf(stderr, "Cannot open input file '%s'\n", argv[2]);
        return -1;
    }

接下来,avformat_open_input,就是打开输入文件,在我这里,对应的就是打开“~/视频/210329_06B_Bali_1080p_013.mp4”这个文件,argv[2]就是输入视频路径,如果失败了,就返回-1,否则继续。

    if (avformat_find_stream_info(input_ctx, NULL) < 0) {
        fprintf(stderr, "Cannot find input stream information.\n");
        return -1;
    }

然后,查找视频文件里面的码流信息,一般就是找这个视频里面,有几个视频流,有几个音频流,如果没有找到因视频信息,就加一条错误打印,然后返回-1.

    /* find the video stream information */
    ret = av_find_best_stream(input_ctx, AVMEDIA_TYPE_VIDEO, -1, -1, &decoder, 0);
    if (ret < 0) {
        fprintf(stderr, "Cannot find a video stream in the input file\n");
        return -1;
    }
    video_stream = ret;

接下来,查找AVMEDIA_TYPE_VIDEO,也就是查找视频流信息,并将视频流的索引号,保存在video_stream中。

    for (i = 0;; i++) {
        const AVCodecHWConfig *config = avcodec_get_hw_config(decoder, i);
        if (!config) {
            fprintf(stderr, "Decoder %s does not support device type %s.\n",
                    decoder->name, av_hwdevice_get_type_name(type));
            return -1;
        }
        if (config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX &&
            config->device_type == type) {
            hw_pix_fmt = config->pix_fmt;
            break;
        }
    }

接下来,就是通过一个循环,查找能支持的硬件格式对应的pix_fmt,比如我这里使用vaapi,那么通过AV_HWDEVICE_TYPE_VAAPI找到了pix_fmt为AV_PIX_FMT_VAAPI_VLD。
linux下ffmpeg调用GPU硬件解码(VDPAU/VAAPI)保存文件,linux,ffmpeg

    if (!(decoder_ctx = avcodec_alloc_context3(decoder)))
        return AVERROR(ENOMEM);

    video = input_ctx->streams[video_stream];
    if (avcodec_parameters_to_context(decoder_ctx, video->codecpar) < 0)
        return -1;

	decoder_ctx->get_format  = get_hw_format;

继续,分配一个解码上下文 decoder_ctx,然后根据视频码流信息,填充decoder_ctx里面内容。
并将get_hw_format这个函数地址,给到decoder_ctx->get_format中,这样后续解码器解码时会调用这个get_fomat函数指针来对格式进行判断。

    if (hw_decoder_init(decoder_ctx, type) < 0)
        return -1;

初始化完了解码上下文,再初始化硬件解码器。

    if ((ret = avcodec_open2(decoder_ctx, decoder, NULL)) < 0) {
        fprintf(stderr, "Failed to open codec for stream #%u\n", video_stream);
        return -1;
    }

打开解码器。

    /* open the file to dump raw data */
    output_file = fopen(argv[3], "w+");

打开输出文件,这个argv[3],就对应我们命令行里面的out.yuv,就是打开这个文件,方便后面写入使用。

    /* actual decoding and dump the raw data */
    while (ret >= 0) {
        if ((ret = av_read_frame(input_ctx, &packet)) < 0)
            break;

        if (video_stream == packet.stream_index)
            ret = decode_write(decoder_ctx, &packet);

        av_packet_unref(&packet);
    }

重点戏来了,就是这个while循环,av_read_frame读取一帧数据,保存在packet中,然后判断以下这个packet的stream_index是不是video_stream,如果是视频数据,就调用decode_write,否则就什么也不做,处理完之后,调用av_packet_unref取消packet的引用。看来重点就在这个decode_write函数里面。

static int decode_write(AVCodecContext *avctx, AVPacket *packet)
{
    AVFrame *frame = NULL, *sw_frame = NULL;
    AVFrame *tmp_frame = NULL;
    uint8_t *buffer = NULL;
    int size;
    int ret = 0;

    ret = avcodec_send_packet(avctx, packet);
    if (ret < 0) {
        fprintf(stderr, "Error during decoding\n");
        return ret;
    }

decode_write拿到packet数据,调用avcodec_send_packet,将packet发送给解码器。


    while (1) {
        if (!(frame = av_frame_alloc()) || !(sw_frame = av_frame_alloc())) {
            fprintf(stderr, "Can not alloc frame\n");
            ret = AVERROR(ENOMEM);
            goto fail;
        }

        ret = avcodec_receive_frame(avctx, frame);
        if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
            av_frame_free(&frame);
            av_frame_free(&sw_frame);
            return 0;
        } else if (ret < 0) {
            fprintf(stderr, "Error while decoding\n");
            goto fail;
        }

        if (frame->format == hw_pix_fmt) {
            /* retrieve data from GPU to CPU */
            if ((ret = av_hwframe_transfer_data(sw_frame, frame, 0)) < 0) {
                fprintf(stderr, "Error transferring the data to system memory\n");
                goto fail;
            }
            tmp_frame = sw_frame;
        } else
            tmp_frame = frame;

        size = av_image_get_buffer_size(tmp_frame->format, tmp_frame->width,
                                        tmp_frame->height, 1);
        buffer = av_malloc(size);
        if (!buffer) {
            fprintf(stderr, "Can not alloc buffer\n");
            ret = AVERROR(ENOMEM);
            goto fail;
        }
        ret = av_image_copy_to_buffer(buffer, size,
                                      (const uint8_t * const *)tmp_frame->data,
                                      (const int *)tmp_frame->linesize, tmp_frame->format,
                                      tmp_frame->width, tmp_frame->height, 1);
        if (ret < 0) {
            fprintf(stderr, "Can not copy image to buffer\n");
            goto fail;
        }

        if ((ret = fwrite(buffer, 1, size, output_file)) < 0) {
            fprintf(stderr, "Failed to dump raw data.\n");
            goto fail;
        }

    fail:
        av_frame_free(&frame);
        av_frame_free(&sw_frame);
        av_freep(&buffer);
        if (ret < 0)
            return ret;
    }

然后一个大的while循环,这里其实就是让解码器去解码,如果解码得到数据,就将数据从GPU显存拷贝到CPU内存,然后再写入out.yuv文件中。下面分开讲解。

    while (1) {
        if (!(frame = av_frame_alloc()) || !(sw_frame = av_frame_alloc())) {
            fprintf(stderr, "Can not alloc frame\n");
            ret = AVERROR(ENOMEM);
            goto fail;
        }

while的开始,分配了2个frame,第一个frame,是用来保存GPU解码完毕的数据,这个数据位于显存。第2个sw_frame是用来保存内存数据,用来将GPU显存的yuv数据拷贝到内存用的。

        ret = avcodec_receive_frame(avctx, frame);
        if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
            av_frame_free(&frame);
            av_frame_free(&sw_frame);
            return 0;
        } else if (ret < 0) {
            fprintf(stderr, "Error while decoding\n");
            goto fail;
        }

avcode_receive_frame,用来接受解码器传过来的frame数据,也就是如果解码器解码完了,会得到一个解码完毕的AVFrame数据,这个数据就保存在frame中。如果返回值为EAGAIN或者AVERROR_EOF,说明之前的packet并没有解码得到一个完整的AVFrame数据,因此需要把前面分配的2个frame和sw_frame都释放掉,然后返回0,说明这一个packet处理完毕了。如果ret 是其他值 < 0,说明解码出错了,goto fail。fail标签后面再说。

        if (frame->format == hw_pix_fmt) {
            /* retrieve data from GPU to CPU */
            if ((ret = av_hwframe_transfer_data(sw_frame, frame, 0)) < 0) {
                fprintf(stderr, "Error transferring the data to system memory\n");
                goto fail;
            }
            tmp_frame = sw_frame;
        } else
            tmp_frame = frame;

否则,我们解码得到了一帧数据,判断一下,这一帧数据的格式,如果格式正好是hw_pix_fmt,那么调用av_hwframe_transfer_data,将frame里面的GPU数据,传输到sw_frame里面,tmp_frame正好等于sw_frame。如果不是hw_pix_fmt,那么tmp_frame就是frame。这个执行完之后,tmp_frame里面保存的就是内存数据了。

        size = av_image_get_buffer_size(tmp_frame->format, tmp_frame->width,
                                        tmp_frame->height, 1);
        buffer = av_malloc(size);
        if (!buffer) {
            fprintf(stderr, "Can not alloc buffer\n");
            ret = AVERROR(ENOMEM);
            goto fail;
        }
        ret = av_image_copy_to_buffer(buffer, size,
                                      (const uint8_t * const *)tmp_frame->data,
                                      (const int *)tmp_frame->linesize, tmp_frame->format,
                                      tmp_frame->width, tmp_frame->height, 1);
        if (ret < 0) {
            fprintf(stderr, "Can not copy image to buffer\n");
            goto fail;
        }

接下来,判断tmp_frame的数据大小,分配一个size大小的buffer,将tmp_frame的数据,搬到buffer中。

        if ((ret = fwrite(buffer, 1, size, output_file)) < 0) {
            fprintf(stderr, "Failed to dump raw data.\n");
            goto fail;
        }

然后将buffer中的数据,写入到output_file中,也就是写入到out.yuv中。

    fail:
        av_frame_free(&frame);
        av_frame_free(&sw_frame);
        av_freep(&buffer);
        if (ret < 0)
            return ret;
    }
}

如果失败了,释放frame, sw_frame, buffer内容,并且如果ret <0, 返回ret。

    /* actual decoding and dump the raw data */
    while (ret >= 0) {
        if ((ret = av_read_frame(input_ctx, &packet)) < 0)
            break;

        if (video_stream == packet.stream_index)
            ret = decode_write(decoder_ctx, &packet);

        av_packet_unref(&packet);
    }

    /* flush the decoder */
    packet.data = NULL;
    packet.size = 0;
    ret = decode_write(decoder_ctx, &packet);
    av_packet_unref(&packet);

    if (output_file)
        fclose(output_file);
    avcodec_free_context(&decoder_ctx);
    avformat_close_input(&input_ctx);
    av_buffer_unref(&hw_device_ctx);

    return 0;
}

然后一直循环av_read_frame,解码写文件,直到av_read_frame < 0,也就是把整个输入文件都处理完了,这个while循环结束。
接下来,还设置了一个packet.data = NULL, 调用了一次decode_write,就是告诉解码器,我没有数据了,你里面如果还缓存一些数据,都给我输出出来吧。

最后就是关闭输出文件,释放解码器上下文,关闭输出,释放硬件设备上下文。至此, hw_decode解析完毕。文章来源地址https://www.toymoban.com/news/detail-827282.html

常见问题

  1. 为什么硬件解码这么慢,CPU占用率也很高?
    答: 之所以这么慢,CPU占用率高,是因为有2个操作,1个操作是需要将数据从GPU显存拷贝到CPU内存,另外1个操作是需要写文件。如果你屏蔽av_hwframe_transfer_data及之后的操作,这里对应代码107行到139行,那么速度将会特别快。
    2. 为什么运行vaapi时提示找不到vaapi device。
    答:可能原因是没有安装 vaapi驱动,或者没有指定LIBVA_DRIVER_NAME这个环境变量。

到了这里,关于linux下ffmpeg调用GPU硬件解码(VDPAU/VAAPI)保存文件的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • rk3588 ffmpeg使用硬件解码

    在https://johnvansickle.com/ffmpeg/下载最新的版本然后解压 将ffmpeg移动到/usr/local/bin文件夹 命令行输入ffmpeg没有报错就安装好了 git下载mpp包 编译安装 解压 –prefix 指定安装目录 –host 当前编译工具链的前缀 ll /usr/bin/gcc*查看 编译指令 –enable-gpl 允许使用GPL代码,生成的库和二进制

    2024年02月04日
    浏览(42)
  • ffmpeg cuda硬件解码后处理使用opengl渲染,全硬件流程

    使用硬件解码后不要transfer到内存,使用cuda转化nv12 - bgr24 转化完毕后cuda里面存了一份bgr24 如果需要opencv gpumat直接使用cuda内存,则可以手动构造gpumat 可以使用gpumat的各种函数 ptr(0)、ptr(1)和ptr(2)分别获取了R、G、B三个通道的数据指针。 使用reinterpret_cast将uchar 指针转换为ucha

    2024年04月12日
    浏览(45)
  • nvidia jetson 平台使用 ffmpeg nvmpi 硬件编解码

    首先目前ffmpeg不支持在nvidia jetson 平台上进行使用硬件编解码加速,但是由于nvidia 提供了相对的硬件编解码加速的api,故可以将api集成到ffmpeg实现。 好在国外大神多,在github上已经有人实现了。 GitHub - jocover/jetson-ffmpeg: ffmpeg support on jetson nano 这个是实现的jetson api 的c++ 工程,

    2024年02月16日
    浏览(47)
  • 使用GPU硬件加速FFmpeg视频转码

    本文内容包括: 在Linux环境下安装FFmpeg 通过命令行实现视频格式识别和转码 有Nvidia显卡的情况下,在Linux下使用GPU进行视频转码加速的方法 在FFmpeg官网https://ffmpeg.org/download.html可以下载到ubunto/debian的发行包,其他Linux发行版需自行编译。同时,如果要使用GPU进行硬件加速的话

    2024年02月08日
    浏览(45)
  • Ubuntu 18.04 安装ffmpeg(支持GPU硬件加速)

    1:安装前请自行安装nvidia驱动和cudu cudnn 查看cuda版本 2:安装nv-codec-hearers 官网: https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu/ 3:安装ffmpeg编码库 4:安装ffmpeg 5:建立软连接 增加安装目录的动态链接库 6 检查硬件加速 7:添加库连接 8 :运行实例检查 9:卸载

    2023年04月18日
    浏览(109)
  • FFmpeg 在Windows环境下 Intel ,Nvidia ,AMD 硬件加速编解码支持列表

    目录 前言 一. Intel 编解码硬件支持列表   1. Encode 编码硬件支持列表 (1)Intel 独显编码硬件支持列表 (2)第 11,12,13 代 Intel 处理器编码硬件支持列表 (3)第 10 代 Intel 处理器编码硬件支持列表 (4)第 9 代 Intel 处理器编码硬件支持列表 (5)第 5,6,7,8 代 Intel 处理器

    2024年02月03日
    浏览(48)
  • ffmpeg tensorrt c++多拉流硬解码yolov5 yolov7 bytetrack 人流追踪统计 硬件编码推流直播

    ffmpeg拉流硬解码yolov5 bytetrack 人流追踪统计 硬件编码推流直播 编程语言C++,所以环境搭建可能比较复杂,需要有耐心。 CPU:I5 12490F GPU:RTX2060 6GB RAM:16x2 GB双通道 我测试运行可以25路(很极限了),20路比较稳,不会爆显存。 多路编码推流有个问题,就是NVIDIA对消费级显卡编

    2024年02月14日
    浏览(56)
  • 玩转rk3588(六):rk3588使用ffmpeg实现硬件解码,解决opencv中VideoCapture获取网络摄像头视频时,一直在open时返回false的问题(一)

    目录 0、前言 1、开发环境 2、安装rkmpp 3、安装x264 4、安装libdrm 5、安装ffmpeg 6、相关报错 1)libdrm编译过程中报错

    2024年02月03日
    浏览(54)
  • 20230403在WIN10下通过ffmpeg调用NVIDIA的硬件加速wmv视频转码为MP4格式

    20230403在WIN10下通过ffmpeg调用NVIDIA的硬件加速wmv视频转码为MP4格式 2023/4/3 15:50 最近向学习日语,找到日语发音的视频中,大多数是MP4格式,少量是WMV格式,PR2023貌似不能识别WMV格式。 于是:万能的ffmpeg上场了!   手动指定编解码器 通过 ffmpeg -codecs | findstr \\\"vc1\\\" 查看 vc1 的编解

    2023年04月22日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包