MATLAB计算极限和微积分

这篇具有很好参考价值的文章主要介绍了MATLAB计算极限和微积分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.函数与极限

计算极限:lim(3*x^2/(2x+1)),x分别趋于0和1,代码如下:

syms x;
limit(3*x*x/(2*x+1),x,0)
limit(3*x*x/(2*x+1),x,1)

结果分别为0和1:

MATLAB计算极限和微积分,Math,# MATLAB,matlab

1.计算双侧极限

计算极限:lim(3*x^2/(2x+1)),x分别趋于0和1,代码如下:

syms x;
limit(3*x*x/(2*x+1),x,0)
limit(3*x*x/(2*x+1),x,1)
2.计算单侧极限

分别计算当x从左右两边趋向0时,1/x的极限值:

syms x;
limit(1/x,x,0,'left')
limit(1/x,x,0,'right')

 结果分别为负无穷和正无穷:

MATLAB计算极限和微积分,Math,# MATLAB,matlab

 3.绘制极限图像
clear
clc
syms n
x=1/n;
y=inline(x);
max=10;
n=0:0.1:max;
figure
plot(n,y(n))
grid on
hold on

如下:最大值max、间距均可以根据实际情况做出调整~ 

MATLAB计算极限和微积分,Math,# MATLAB,matlab

 二.导数与微分

1.一阶导数
syms x
diff(sin(2*x))

结果为:2cos2x

MATLAB计算极限和微积分,Math,# MATLAB,matlab

Tips:

在MATLAB中书写要严谨,sin2x要写成sin(2*x),千万不要习惯性简写~ 

 

 

2.高阶导数

计算:3(x^4)+4(x^2)+cos(2*x)的三阶导数:

一阶导如下:

MATLAB计算极限和微积分,Math,# MATLAB,matlab

三阶导如下:

 
  1. syms x

  2. diff(3*(x^4)+4*(x^2)+cos(2*x),x,3)

MATLAB计算极限和微积分,Math,# MATLAB,matlab

 

3.参数方程求导

设参数方程:

  • x=3*sin(2*n)
  • y=arcsin(n^2)
syms n
x=3*sin(2*n)
y=asin(n^2)
diff(y)/diff(x)
%pretty(diff(y)/diff(x))

MATLAB计算极限和微积分,Math,# MATLAB,matlab 

 三.微分中值定理及其应用

四.不定积分

1.极值与最值

求极值,一个想法是求出一阶导为0的点,不过这样需要人为判断是极大值还是极小值,以及结合单调性判断必要条件~

syms x y
y=sin(x)+cos(2*x);
num=diff(y);        
solve(num)

MATLAB计算极限和微积分,Math,# MATLAB,matlab

求最值,这里使用了内联函数,本质上还是暴力搜索,所以搜索范围搜索间隔的选择很重要,其实甚至可以使用遗传算法和模拟退火,不过这里是考研数学,就不展开写高难度的算法了~

clear
clc
 
t= -100:0.0001:100;  
 
syms x;
y = inline(x^2+5*x+12);      
 
max = max(y(t));
min = min(y(t));

(相比之下还是用极值法比较简易。。。)  

2.单调区间 

f = @(x) x.^2 + 2*x + 1; %函数句柄的写法
x = -10:0.1:10;
y = f(x);
dy = diff(y);%计算一阶微分 

方法不够严谨,只能根据一阶微分大致估计一下单调性变化的点~

 3.渐近线

(本质还是求极限,列出公式调用limit函数限即可,此处暂略~)

五.定积分

syms x y;%变量
f=sin(2*x)+3*cos(3*x)+3*x+3; %目标函数式
int(f,'x')%求解不定积分,两个参数分别为积分表达式和被积变量

MATLAB计算极限和微积分,Math,# MATLAB,matlab (注意不定积分往往答案不唯一,若答案不一致可以尝试变形看看与自己算的结果是否一致~)  

六.定积分的应用

(基本上是一些应用题~)文章来源地址https://www.toymoban.com/news/detail-827322.html

到了这里,关于MATLAB计算极限和微积分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图形学基础--深入浅出的微积分书籍 《普林斯顿微积分读本》和《托马斯微积分》

           话说程序员有三大浪漫,图形学,编译原理,操作系统,说到这里,可能搞深度学习的要跳出来反驳. 这三大浪漫正确与否其实并不重要,重要的是这种说法侧面反映了学习图形学的难度. 图形学之所以有难度,是因为它有一定的数学门槛. 一提到数学,大家脑海中肯

    2024年02月13日
    浏览(54)
  • 微积分物理题()

    在一个粗糙的平面上,有一个质量为 1 kg 1text{kg} 1 kg 的小木块,小木块的初速度为 0 0 0 ,小木块与平面的动摩擦因数 μ = 0.2 mu=0.2 μ = 0.2 。有一个拉力 F F F 拉动小木块从左往右移动,拉力 F F F 与时间 t t t 的关系为 F = 0.3 t 2 − 2.4 t + 5.6 F=0.3t^2-2.4t+5.6 F = 0.3 t 2 − 2.4 t + 5.6 。

    2024年02月15日
    浏览(44)
  • 微积分基本概念

    微分 函数的微分是指对 函数的局部变化的一种线性描述 。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。。对于函数 y = f ( x ) y = f(x) y = f ( x ) 的微分记作: d y = f ′ ( x ) d x d_y = f^{\\\'}(x)d_x d y ​ = f ′ ( x ) d x ​ 微分和导数的区别在于:

    2024年02月11日
    浏览(53)
  • 高等数学:微积分(下)

    导数说完了就可以说微分了。还是看图中过A点的切线,其与竖直虚线相交于C点。其中CD段的距离可以表示为 C D = k ⋅ Δ x CD = k cdot Delta x\\\\ C D = k ⋅ Δ x 这里的系数k是一个不为零的常数。原因很简单,假设这条切线与x轴的夹角为 θ theta θ (图中没有画出),那么根据三角函

    2024年02月12日
    浏览(56)
  • 微积分之八——级数整理

    几何级数(等比级数) ∑ n = 0 ∞ a q n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n + ⋅ ⋅ ⋅ ( a ≠ 0 ) s n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n − 1 = a ⋅ 1 − q n 1 − q { ∣ q ∣ 1 , 级 数 收 敛 ∣ q ∣ 1 , 级 数 发 散 q = 1 , S n = n a → ∞ 级 数 发 散 q = − 1 , S n = { a , n 为 奇 数 0 , n 为 偶 数 , 所

    2024年02月13日
    浏览(46)
  • 11. 微积分 - 偏导数&方向导数

    Hi, 大家好。我是茶桁。 我们上节课学习了链式法则,本节课,我们要学习「偏导数」和「方向导数」。 偏导数在导论课里面也提到过。偏导数针对多元函数去讲的。 多元函数是什么,我们拿个例子来看: 多元函数: y =

    2024年02月10日
    浏览(54)
  • 微积分——求导数的链式法则

    链式法则 (Chain Rule)是微积分最强大的法则之一。这个法则处理的是 复合函数 (Composite Functions)的导数问题。 复合函数:  以另一种方式将两个函数组合起来的函数。正式定义: 令 f  和 g  分别为两个函数,函数( f 。 g )( x ) =  f  ( g ( x ))称为 f  与 g  的复合函数。复合函数

    2023年04月08日
    浏览(55)
  • 【Python · PyTorch】线性代数 & 微积分

    本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1+cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数是数学的一个分支,它的研究对象是向量、向量空间(线性空间)、线性变换及有限维的线性方程组。线性代数已被广泛地应用于

    2024年02月08日
    浏览(49)
  • 在AI中无所不在的微积分

           微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用: 优化算法:          •梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通

    2024年04月12日
    浏览(35)
  • 李沐 《动手学深度学习》预备知识 线性代数与微积分

    李沐《动手学深度学习》预备知识 张量操作与数据处理 教材:李沐《动手学深度学习》 标量(scalar) 仅包含一个数值被称为标量,标量由只有一个元素的张量表示。 向量 向量可以被视为标量值组成的列表,向量由一维张量表示。一般来说,张量可以具有任意长度,取决于

    2024年01月20日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包