STM32+WIFI+阿里云MQTT温湿度与继电器远程控制

这篇具有很好参考价值的文章主要介绍了STM32+WIFI+阿里云MQTT温湿度与继电器远程控制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、功能描述

STM32+WIFI+阿里云MQTT温湿度与继电器远程控制,stm32,阿里云,嵌入式硬件

1.实现了温湿度采集、按键读取、控制继电器、蜂鸣器等功能
2.实现了串口上位机使用AT指令配置esp8266模块
3.实现了stm32单片机通过esp8266模块阿里云无线远程通信的功能
4.实现了温湿度阈值报警、继电器开关等逻辑功能

二、AT指令与阿里云

AT+RST        //复位

AT+CWMODE=1        //SA模式

AT+CIPSNTPCFG=1,8,"ntp1.aliyun.com"        //连接阿里云

AT+CWJAP="Mi11Ultra","/"        //连接WiFi(是密码)不能使用5G频段

AT+MQTTUSERCFG=0,1,"NULL","ESP8266&k0p98TFTk3H","d34f56264dc58877374236dd9aed118d71a5b2c1348eec80ebd2c2c3e15c3bc6",0,0,""    //设置MQTT参数

AT+MQTTCLIENTID=0,"k0p98TFTk3H.ESP8266|securemode=2\,signmethod=hmacsha256\,timestamp=1703866363540|"    //设置MQTT参数

AT+MQTTCONN=0,"iot-06z00f3sll2j0br.mqtt.iothub.aliyuncs.com",1883,1        //设置MQTT参数

AT+MQTTSUB=0,"/sys/k0p98TFTk3H/ESP8266/thing/service/property/set",1    //订阅

AT+MQTTPUB=0,"/sys/k0p98TFTk3H/ESP8266/thing/event/property/post","{\"temp\":50.5}",1,0        //发布

阿里云物联网产品

STM32+WIFI+阿里云MQTT温湿度与继电器远程控制,stm32,阿里云,嵌入式硬件

三、硬件部分

1.原理图

        供电使用接线端子BAT,6-12V,接入一路稳5V的ams1117,再接一路稳3.3V的ams1117。5V电源给stm32最小系统板上的5V转3.3V稳压使用,也给串口、继电器供电使用以及拓展的5V供电排针使用。3.3V给其他相关外设使用,以及拓展的3.3V供电排针使用。ss54二极管用于电源防反接。

STM32+WIFI+阿里云MQTT温湿度与继电器远程控制,stm32,阿里云,嵌入式硬件

2.PCB图

        外设不多,且使用最小系统板,只需放置排母即可,布局走线很简单。要注意的是背面切割尽量减少,两层板尽量保证背面GND网络的完整性,给顶层信号提供参考地。电源线加粗,干路电源线相比支路电源线也要加粗处理。LDO部分滤波电容不要外挂,输入要先经过电容再进芯片,输出先经过电容再给其他外设供电。

STM32+WIFI+阿里云MQTT温湿度与继电器远程控制,stm32,阿里云,嵌入式硬件STM32+WIFI+阿里云MQTT温湿度与继电器远程控制,stm32,阿里云,嵌入式硬件

3.实物图

STM32+WIFI+阿里云MQTT温湿度与继电器远程控制,stm32,阿里云,嵌入式硬件

四、软件部分

1.主函数main
int main ( void )
{
	uint8_t numdebugrx;
	uint8_t num8266rx;

	DHT11_Init();
    USART1_Config ();                                 //初始化串口1
    CPU_TS_TmrInit();                                 //初始化DWT计数器,用于延时函数
    LED_GPIO_Config();                                //初始化 LED 灯
	ESP8266_Init ();                                  //初始化WiFi模块使用的接口和外设
    OLED_Init();                                      //初始化OLED
	//macESP8266_Usart ( "%s\r\n", "AABC" );

    OLED_ShowString(1, 3, "ESP8266TEST");
	
    macESP8266_CH_ENABLE();                           //使能 ESP8266
    Beep_OFF;
	ESP8266_AT_Test();                                //开启AT测试
	
    DHT11_Data_TypeDef sensorData;                    //温湿度数据结构体变量
    DHT11_Read_TempAndHumidity(&sensorData);          //读取温湿度
	printf("Humidity: %d.%d%%\n", sensorData.humi_int, sensorData.humi_deci);
    printf("Temperature: %d.%d°C\n", sensorData.temp_int, sensorData.temp_deci);
    printf("Checksum: %d\n", sensorData.check_sum);
  while ( 1 )
  {
		DHT11_Data_TypeDef sensorData;
		DHT11_Read_TempAndHumidity(&sensorData);
		
		OLED_ShowNum(2, 4, strUSART_Fram_Record .InfBit .FramLength,3);
		OLED_ShowNum(4, 4, strEsp8266_Fram_Record .InfBit .FramLength,3);
		OLED_ShowNum(2,12,num8266rx,4);
		OLED_ShowNum(4,12,numdebugrx,4);
		
		OLED_ShowString(3,2,"W:");
		OLED_ShowString(3,10,"S:");
		OLED_ShowString(3,6,".");
		OLED_ShowString(3,14,".");
		OLED_ShowNum(3,4,sensorData.temp_int,2);
		OLED_ShowNum(3,12,sensorData.humi_int,2);
		OLED_ShowNum(3,7,sensorData.temp_deci,2);
		OLED_ShowNum(3,15,sensorData.humi_deci,2);
		if(sensorData.temp_int > 20)                    //蜂鸣器报警
		{
			Beep_ON;
		}
		else
		{
			Beep_OFF;
		}
		
    if(strUSART_Fram_Record .InfBit .FramFinishFlag == 1)  //如果接收到了串口调试助手的数据
		{
			strUSART_Fram_Record .Data_RX_BUF[strUSART_Fram_Record .InfBit .FramLength] = '\0';
			numdebugrx ++;
			Usart_SendString(macESP8266_USARTx ,strUSART_Fram_Record .Data_RX_BUF);      //数据从串口调试助手转发到ESP8266
			strUSART_Fram_Record .InfBit .FramLength = 0;                                //接收数据长度置零
			strUSART_Fram_Record .InfBit .FramFinishFlag = 0;                            //接收标志置零
	  }
		if(strEsp8266_Fram_Record .InfBit .FramFinishFlag)                             //如果接收到了ESP8266的数据
		{                                                      
			 strEsp8266_Fram_Record .Data_RX_BUF[strEsp8266_Fram_Record .InfBit .FramLength] = '\0';
			 num8266rx ++;
			 Usart_SendString(DEBUG_USARTx ,strEsp8266_Fram_Record .Data_RX_BUF);        //数据从ESP8266转发到串口调试助手
			if(strstr((const char*)strEsp8266_Fram_Record .Data_RX_BUF,"on"))
			{
				OLED_ShowString(4,8,"on");
				LED2_OFF;				
			}
			if(strstr((const char*)strEsp8266_Fram_Record .Data_RX_BUF,"off"))
			{
				OLED_ShowString(4,8,"off");	
				LED2_ON;
			}
			 strEsp8266_Fram_Record .InfBit .FramLength = 0;                             //接收数据长度置零
			 strEsp8266_Fram_Record.InfBit.FramFinishFlag = 0;                           //接收标志置零
		}
   
  }
	
}

2.串口1配置函数(用于上位机debug)
#include "bsp_usart1.h"


 /**
  * @brief  配置嵌套向量中断控制器NVIC
  * @param  无
  * @retval 无
  */
static void NVIC_Configuration(void)
{
  NVIC_InitTypeDef NVIC_InitStructure;
  
  /* 嵌套向量中断控制器组选择 */
  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
  
  /* 配置USART为中断源 */
  NVIC_InitStructure.NVIC_IRQChannel = DEBUG_USART_IRQ;
  /* 抢断优先级*/
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
  /* 子优先级 */
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
  /* 使能中断 */
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  /* 初始化配置NVIC */
  NVIC_Init(&NVIC_InitStructure);
}


 /**
  * @brief  USART GPIO 配置,工作参数配置
  * @param  无
  * @retval 无
  */
void USART1_Config(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;

	// 打开串口GPIO的时钟
	DEBUG_USART_GPIO_APBxClkCmd(DEBUG_USART_GPIO_CLK, ENABLE);
	
	// 打开串口外设的时钟
	DEBUG_USART_APBxClkCmd(DEBUG_USART_CLK, ENABLE);

	// 将USART Tx的GPIO配置为推挽复用模式
	GPIO_InitStructure.GPIO_Pin = DEBUG_USART_TX_GPIO_PIN;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(DEBUG_USART_TX_GPIO_PORT, &GPIO_InitStructure);

  // 将USART Rx的GPIO配置为浮空输入模式
	GPIO_InitStructure.GPIO_Pin = DEBUG_USART_RX_GPIO_PIN;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	GPIO_Init(DEBUG_USART_RX_GPIO_PORT, &GPIO_InitStructure);
	
	// 配置串口的工作参数
	// 配置波特率
	USART_InitStructure.USART_BaudRate = DEBUG_USART_BAUDRATE;
	// 配置 针数据字长
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	// 配置停止位
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	// 配置校验位
	USART_InitStructure.USART_Parity = USART_Parity_No ;
	// 配置硬件流控制
	USART_InitStructure.USART_HardwareFlowControl = 
	USART_HardwareFlowControl_None;
	// 配置工作模式,收发一起
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
	// 完成串口的初始化配置
	USART_Init(DEBUG_USARTx, &USART_InitStructure);	
	
		// 串口中断优先级配置
	NVIC_Configuration();
	
	// 使能串口接收中断
	USART_ITConfig(DEBUG_USARTx, USART_IT_RXNE, ENABLE);
  USART_ITConfig ( DEBUG_USARTx, USART_IT_IDLE, ENABLE ); //使能串口总线空闲中断 	
	// 使能串口
	USART_Cmd(DEBUG_USARTx, ENABLE);	    
}

/*****************  发送一个字符 **********************/
void Usart_SendByte( USART_TypeDef * pUSARTx, uint8_t ch)
{
	/* 发送一个字节数据到USART */
	USART_SendData(pUSARTx,ch);
		
	/* 等待发送数据寄存器为空 */
	while (USART_GetFlagStatus(pUSARTx, USART_FLAG_TXE) == RESET);	
}

/*****************  发送字符串 **********************/
void Usart_SendString( USART_TypeDef * pUSARTx, char *str)
{
	unsigned int k=0;
  do 
  {
      Usart_SendByte( pUSARTx, *(str + k) );
      k++;
  } while(*(str + k)!='\0');
  
  /* 等待发送完成 */
  while(USART_GetFlagStatus(pUSARTx,USART_FLAG_TC)==RESET)
  {}
}

/*****************  发送一个16位数 **********************/
void Usart_SendHalfWord( USART_TypeDef * pUSARTx, uint16_t ch)
{
	uint8_t temp_h, temp_l;
	
	/* 取出高八位 */
	temp_h = (ch&0XFF00)>>8;
	/* 取出低八位 */
	temp_l = ch&0XFF;
	
	/* 发送高八位 */
	USART_SendData(pUSARTx,temp_h);	
	while (USART_GetFlagStatus(pUSARTx, USART_FLAG_TXE) == RESET);
	
	/* 发送低八位 */
	USART_SendData(pUSARTx,temp_l);	
	while (USART_GetFlagStatus(pUSARTx, USART_FLAG_TXE) == RESET);	
}

///重定向c库函数printf到串口,重定向后可使用printf函数
int fputc(int ch, FILE *f)
{
		/* 发送一个字节数据到串口 */
		USART_SendData(DEBUG_USARTx, (uint8_t) ch);
		
		/* 等待发送完毕 */
		while (USART_GetFlagStatus(DEBUG_USARTx, USART_FLAG_TXE) == RESET);		
	
		return (ch);
}

///重定向c库函数scanf到串口,重写向后可使用scanf、getchar等函数
int fgetc(FILE *f)
{
		/* 等待串口输入数据 */
		while (USART_GetFlagStatus(DEBUG_USARTx, USART_FLAG_RXNE) == RESET);

		return (int)USART_ReceiveData(DEBUG_USARTx);
}
3.ESP8266配置函数(串口、复位、使能、IO)
u16 USART_RX_STA=0;
u8 USART_RX_BUF[USART_REC_LEN];

static void                   ESP8266_GPIO_Config                 ( void );
static void                   ESP8266_USART_Config                ( void );
static void                   ESP8266_USART_NVIC_Configuration    ( void );



struct  STRUCT_USARTx_Fram strEsp8266_Fram_Record = { 0 };
struct  STRUCT_USARTx_Fram strUSART_Fram_Record = { 0 };


/**
  * @brief  ESP8266初始化函数
  * @param  无
  * @retval 无
  */
void ESP8266_Init ( void )
{
	ESP8266_GPIO_Config (); 
	
	ESP8266_USART_Config (); 
	
	
	macESP8266_RST_HIGH_LEVEL();

	macESP8266_CH_DISABLE();
	
	macESP8266_IO0_HIGH_LEVEL();
	
}


/**
  * @brief  初始化ESP8266用到的GPIO引脚
  * @param  无
  * @retval 无
  */
static void ESP8266_GPIO_Config ( void )
{
	/*定义一个GPIO_InitTypeDef类型的结构体*/
	GPIO_InitTypeDef GPIO_InitStructure;


	/* 配置 CH_PD 引脚*/
	macESP8266_CH_PD_APBxClock_FUN ( macESP8266_CH_PD_CLK, ENABLE ); 
											   
	GPIO_InitStructure.GPIO_Pin = macESP8266_CH_PD_PIN;	

	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;   
   
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

	GPIO_Init ( macESP8266_CH_PD_PORT, & GPIO_InitStructure );	

	/* 配置 IO0 引脚*/
	macESP8266_IO0_APBxClock_FUN ( macESP8266_IO0_CLK, ENABLE ); 
											   
	GPIO_InitStructure.GPIO_Pin = macESP8266_IO0_PIN;	

	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;   
   
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

	GPIO_Init ( macESP8266_IO0_PORT, & GPIO_InitStructure );		

	
	/* 配置 RST 引脚*/
	macESP8266_RST_APBxClock_FUN ( macESP8266_RST_CLK, ENABLE ); 
											   
	GPIO_InitStructure.GPIO_Pin = macESP8266_RST_PIN;	

	GPIO_Init ( macESP8266_RST_PORT, & GPIO_InitStructure );	 


}


/**
  * @brief  初始化ESP8266用到的 USART
  * @param  无
  * @retval 无
  */
static void ESP8266_USART_Config ( void )
{
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	
	
	/* config USART clock */
	macESP8266_USART_APBxClock_FUN ( macESP8266_USART_CLK, ENABLE );
	macESP8266_USART_GPIO_APBxClock_FUN ( macESP8266_USART_GPIO_CLK, ENABLE );
	
	/* USART GPIO config */
	/* Configure USART Tx as alternate function push-pull */
	GPIO_InitStructure.GPIO_Pin =  macESP8266_USART_TX_PIN;//A3
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(macESP8266_USART_TX_PORT, &GPIO_InitStructure);  
  
	/* Configure USART Rx as input floating */
	GPIO_InitStructure.GPIO_Pin = macESP8266_USART_RX_PIN; //A2
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	GPIO_Init(macESP8266_USART_RX_PORT, &GPIO_InitStructure);
	
	/* USART1 mode config */
	USART_InitStructure.USART_BaudRate = macESP8266_USART_BAUD_RATE;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	USART_InitStructure.USART_Parity = USART_Parity_No ;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
	USART_Init(macESP8266_USARTx, &USART_InitStructure);
	
	
	/* 中断配置 */
	USART_ITConfig ( macESP8266_USARTx, USART_IT_RXNE, ENABLE ); //使能串口接收中断 
	USART_ITConfig ( macESP8266_USARTx, USART_IT_IDLE, ENABLE ); //使能串口总线空闲中断 	

	ESP8266_USART_NVIC_Configuration ();
	
	
	USART_Cmd(macESP8266_USARTx, ENABLE);
	
	
}

void USART_ESP8266_IRQHandler(void)                	//ESP8266串口中断服务程序  接收
{
		u8 Res;
		if(USART_GetITStatus(macESP8266_USARTx, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a 回车换行结尾)
		{
					Res =USART_ReceiveData(macESP8266_USARTx);	//读取接收到的数据
					
					if((USART_RX_STA&0x8000)==0)//接收未完成
					{
									if(USART_RX_STA&0x4000)//接收到了0x0d
									{
											if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
											else USART_RX_STA|=0x8000;	//接收完成了 
									}
									else //还没收到0X0D
									{	
											if(Res==0x0d)USART_RX_STA|=0x4000;
											else
											{
													USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
													USART_RX_STA++;
													if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收	  
											}		 
									}
					}   		 
     } 	
	
} 	
/**
  * @brief  配置 ESP8266 USART 的 NVIC 中断
  * @param  无
  * @retval 无
  */
static void ESP8266_USART_NVIC_Configuration ( void )
{
	NVIC_InitTypeDef NVIC_InitStructure; 
	
	
	/* Configure the NVIC Preemption Priority Bits */  
	NVIC_PriorityGroupConfig ( macNVIC_PriorityGroup_x );

	/* Enable the USART2 Interrupt */
	NVIC_InitStructure.NVIC_IRQChannel = macESP8266_USART_IRQ;	 
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Init(&NVIC_InitStructure);

}


/*
 * 函数名:ESP8266_Rst
 * 描述  :重启WF-ESP8266模块
 * 输入  :无
 * 返回  : 无
 * 调用  :被 ESP8266_AT_Test 调用
 */
void ESP8266_Rst ( void )
{
	#if 0
	 ESP8266_Cmd ( "AT+RST", "OK", "ready", 2500 );   	
	
	#else
	 macESP8266_RST_LOW_LEVEL();
	 Delay_ms ( 500 ); 
	 macESP8266_RST_HIGH_LEVEL();
	#endif

}

bool ESP8266_DHCP_CUR ( )
{
	char cCmd [40];

	sprintf ( cCmd, "AT+CWDHCP_CUR=1,1");
	
	return ESP8266_Cmd ( cCmd, "OK", NULL, 500 );
	
}

/*
 * 函数名:ESP8266_Cmd
 * 描述  :对WF-ESP8266模块发送AT指令
 * 输入  :cmd,待发送的指令
 *         reply1,reply2,期待的响应,为NULL表不需响应,两者为或逻辑关系
 *         waittime,等待响应的时间
 * 返回  : 1,指令发送成功
 *         0,指令发送失败
 * 调用  :被外部调用
 */
bool ESP8266_Cmd ( char * cmd, char * reply1, char * reply2, u32 waittime )
{    
	strEsp8266_Fram_Record .InfBit .FramLength = 0;               //从新开始接收新的数据包

	macESP8266_Usart ( "%s\r\n", cmd );

	if ( ( reply1 == 0 ) && ( reply2 == 0 ) )                      //不需要接收数据
		return true;
	
	Delay_ms ( waittime );                 //延时
	
	strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ]  = '\0';

	macPC_Usart ( "%s", strEsp8266_Fram_Record .Data_RX_BUF );
  strEsp8266_Fram_Record .InfBit .FramLength = 0;                             //清除接收标志
	strEsp8266_Fram_Record.InfBit.FramFinishFlag = 0;                             
	if ( ( reply1 != 0 ) && ( reply2 != 0 ) )
		return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply1 ) || 
						 ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply2 ) ); 
 	
	else if ( reply1 != 0 )
		return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply1 ) );
	
	else
		return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply2 ) );
	
}


/*
 * 函数名:ESP8266_AT_Test
 * 描述  :对WF-ESP8266模块进行AT测试启动
 * 输入  :无
 * 返回  : 无
 * 调用  :被外部调用
 */
//void ESP8266_AT_Test ( void )
//{
//	macESP8266_RST_HIGH_LEVEL();
//	
//	Delay_ms ( 1000 ); 
//	
//	while ( ! ESP8266_Cmd ( "AT", "OK", NULL, 500 ) ) ESP8266_Rst ();  	

//}
bool ESP8266_AT_Test ( void )
{
	char count=0;
	
	//macESP8266_RST_HIGH_LEVEL();	
  printf("\r\nAT测试.....\r\n");
	Delay_ms ( 2000 );
	while ( count < 10 )
	{
    printf("\r\nAT测试次数 %d......\r\n", count);
		if( ESP8266_Cmd ( "AT", "OK", NULL, 500 ) )
    {
      printf("\r\nAT测试启动成功 %d......\r\n", count);
      return 1;
    }
		ESP8266_Rst();
		++ count;
	}
  return 0;
}


/*
 * 函数名:ESP8266_Net_Mode_Choose
 * 描述  :选择WF-ESP8266模块的工作模式
 * 输入  :enumMode,工作模式
 * 返回  : 1,选择成功
 *         0,选择失败
 * 调用  :被外部调用
 */
bool ESP8266_Net_Mode_Choose ( ENUM_Net_ModeTypeDef enumMode )
{
	switch ( enumMode )
	{
		case STA:
			return ESP8266_Cmd ( "AT+CWMODE=1", "OK", "no change", 2500 ); 
		
	  case AP:
		  return ESP8266_Cmd ( "AT+CWMODE=2", "OK", "no change", 2500 ); 
		
		case STA_AP:
		  return ESP8266_Cmd ( "AT+CWMODE=3", "OK", "no change", 2500 ); 
		
	  default:
		  return false;
  }
	
}


/*
 * 函数名:ESP8266_JoinAP
 * 描述  :WF-ESP8266模块连接外部WiFi
 * 输入  :pSSID,WiFi名称字符串
 *       :pPassWord,WiFi密码字符串
 * 返回  : 1,连接成功
 *         0,连接失败
 * 调用  :被外部调用
 */
bool ESP8266_JoinAP ( char * pSSID, char * pPassWord )
{
	char cCmd [120];

	sprintf ( cCmd, "AT+CWJAP=\"%s\",\"%s\"", pSSID, pPassWord );
	
	return ESP8266_Cmd ( cCmd, "OK", NULL, 5000 );
	
}


/*
 * 函数名:ESP8266_BuildAP
 * 描述  :WF-ESP8266模块创建WiFi热点
 * 输入  :pSSID,WiFi名称字符串
 *       :pPassWord,WiFi密码字符串
 *       :enunPsdMode,WiFi加密方式代号字符串
 * 返回  : 1,创建成功
 *         0,创建失败
 * 调用  :被外部调用
 */
bool ESP8266_BuildAP ( char * pSSID, char * pPassWord, ENUM_AP_PsdMode_TypeDef enunPsdMode )
{
	char cCmd [120];

	sprintf ( cCmd, "AT+CWSAP=\"%s\",\"%s\",1,%d", pSSID, pPassWord, enunPsdMode );
	
	return ESP8266_Cmd ( cCmd, "OK", 0, 1000 );
	
}


/*
 * 函数名:ESP8266_Enable_MultipleId
 * 描述  :WF-ESP8266模块启动多连接
 * 输入  :enumEnUnvarnishTx,配置是否多连接
 * 返回  : 1,配置成功
 *         0,配置失败
 * 调用  :被外部调用
 */
bool ESP8266_Enable_MultipleId ( FunctionalState enumEnUnvarnishTx )
{
	char cStr [20];
	
	sprintf ( cStr, "AT+CIPMUX=%d", ( enumEnUnvarnishTx ? 1 : 0 ) );
	
	return ESP8266_Cmd ( cStr, "OK", 0, 500 );
	
}


/*
 * 函数名:ESP8266_Link_Server
 * 描述  :WF-ESP8266模块连接外部服务器
 * 输入  :enumE,网络协议
 *       :ip,服务器IP字符串
 *       :ComNum,服务器端口字符串
 *       :id,模块连接服务器的ID
 * 返回  : 1,连接成功
 *         0,连接失败
 * 调用  :被外部调用
 */
bool ESP8266_Link_Server ( ENUM_NetPro_TypeDef enumE, char * ip, char * ComNum, ENUM_ID_NO_TypeDef id)
{
	char cStr [100] = { 0 }, cCmd [120];

  switch (  enumE )
  {
		case enumTCP:
		  sprintf ( cStr, "\"%s\",\"%s\",%s", "TCP", ip, ComNum );
		  break;
		
		case enumUDP:
		  sprintf ( cStr, "\"%s\",\"%s\",%s", "UDP", ip, ComNum );
		  break;
		
		default:
			break;
  }

  if ( id < 5 )
    sprintf ( cCmd, "AT+CIPSTART=%d,%s", id, cStr);

  else
	  sprintf ( cCmd, "AT+CIPSTART=%s", cStr );

	return ESP8266_Cmd ( cCmd, "OK", "ALREAY CONNECT", 4000 );
	
}


/*
 * 函数名:ESP8266_StartOrShutServer
 * 描述  :WF-ESP8266模块开启或关闭服务器模式
 * 输入  :enumMode,开启/关闭
 *       :pPortNum,服务器端口号字符串
 *       :pTimeOver,服务器超时时间字符串,单位:秒
 * 返回  : 1,操作成功
 *         0,操作失败
 * 调用  :被外部调用
 */
bool ESP8266_StartOrShutServer ( FunctionalState enumMode, char * pPortNum, char * pTimeOver )
{
	char cCmd1 [120], cCmd2 [120];

	if ( enumMode )
	{
		sprintf ( cCmd1, "AT+CIPSERVER=%d,%s", 1, pPortNum );
		
		sprintf ( cCmd2, "AT+CIPSTO=%s", pTimeOver );

		return ( ESP8266_Cmd ( cCmd1, "OK", 0, 500 ) &&
						 ESP8266_Cmd ( cCmd2, "OK", 0, 500 ) );
	}
	
	else
	{
		sprintf ( cCmd1, "AT+CIPSERVER=%d,%s", 0, pPortNum );

		return ESP8266_Cmd ( cCmd1, "OK", 0, 500 );
	}
	
}


/*
 * 函数名:ESP8266_Get_LinkStatus
 * 描述  :获取 WF-ESP8266 的连接状态,较适合单端口时使用
 * 输入  :无
 * 返回  : 2,获得ip
 *         3,建立连接
 *         3,失去连接
 *         0,获取状态失败
 * 调用  :被外部调用
 */
uint8_t ESP8266_Get_LinkStatus ( void )
{
	if ( ESP8266_Cmd ( "AT+CIPSTATUS", "OK", 0, 500 ) )
	{
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:2\r\n" ) )
			return 2;
		
		else if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:3\r\n" ) )
			return 3;
		
		else if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:4\r\n" ) )
			return 4;		

	}
	
	return 0;
	
}


/*
 * 函数名:ESP8266_Get_IdLinkStatus
 * 描述  :获取 WF-ESP8266 的端口(Id)连接状态,较适合多端口时使用
 * 输入  :无
 * 返回  : 端口(Id)的连接状态,低5位为有效位,分别对应Id5~0,某位若置1表该Id建立了连接,若被清0表该Id未建立连接
 * 调用  :被外部调用
 */
uint8_t ESP8266_Get_IdLinkStatus ( void )
{
	uint8_t ucIdLinkStatus = 0x00;
	
	
	if ( ESP8266_Cmd ( "AT+CIPSTATUS", "OK", 0, 500 ) )
	{
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:0," ) )
			ucIdLinkStatus |= 0x01;
		else 
			ucIdLinkStatus &= ~ 0x01;
		
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:1," ) )
			ucIdLinkStatus |= 0x02;
		else 
			ucIdLinkStatus &= ~ 0x02;
		
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:2," ) )
			ucIdLinkStatus |= 0x04;
		else 
			ucIdLinkStatus &= ~ 0x04;
		
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:3," ) )
			ucIdLinkStatus |= 0x08;
		else 
			ucIdLinkStatus &= ~ 0x08;
		
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:4," ) )
			ucIdLinkStatus |= 0x10;
		else 
			ucIdLinkStatus &= ~ 0x10;	

	}
	
	return ucIdLinkStatus;
	
}


/*
 * 函数名:ESP8266_Inquire_ApIp
 * 描述  :获取 F-ESP8266 的 AP IP
 * 输入  :pApIp,存放 AP IP 的数组的首地址
 *         ucArrayLength,存放 AP IP 的数组的长度
 * 返回  : 0,获取失败
 *         1,获取成功
 * 调用  :被外部调用
 */
uint8_t ESP8266_Inquire_ApIp ( char * pApIp, uint8_t ucArrayLength )
{
	char uc;
	
	char * pCh;
	
	
  ESP8266_Cmd ( "AT+CIFSR", "OK", 0, 500 );
	
	pCh = strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "APIP,\"" );
	
	if ( pCh )
		pCh += 6;
	
	else
		return 0;
	
	for ( uc = 0; uc < ucArrayLength; uc ++ )
	{
		pApIp [ uc ] = * ( pCh + uc);
		
		if ( pApIp [ uc ] == '\"' )
		{
			pApIp [ uc ] = '\0';
			break;
		}
		
	}
	
	return 1;
	
}


/*
 * 函数名:ESP8266_UnvarnishSend
 * 描述  :配置WF-ESP8266模块进入透传发送
 * 输入  :无
 * 返回  : 1,配置成功
 *         0,配置失败
 * 调用  :被外部调用
 */
bool ESP8266_UnvarnishSend ( void )
{
	if ( ! ESP8266_Cmd ( "AT+CIPMODE=1", "OK", 0, 500 ) )
		return false;
	
	return 
	  ESP8266_Cmd ( "AT+CIPSEND", "OK", ">", 500 );
	
}


/*
 * 函数名:ESP8266_ExitUnvarnishSend
 * 描述  :配置WF-ESP8266模块退出透传模式
 * 输入  :无
 * 返回  : 无
 * 调用  :被外部调用
 */
void ESP8266_ExitUnvarnishSend ( void )
{
	Delay_ms ( 1000 );
	
	macESP8266_Usart ( "+++" );
	
	Delay_ms ( 500 ); 
	
}


/*
 * 函数名:ESP8266_SendString
 * 描述  :WF-ESP8266模块发送字符串
 * 输入  :enumEnUnvarnishTx,声明是否已使能了透传模式
 *       :pStr,要发送的字符串
 *       :ulStrLength,要发送的字符串的字节数
 *       :ucId,哪个ID发送的字符串
 * 返回  : 1,发送成功
 *         0,发送失败
 * 调用  :被外部调用
 */
bool ESP8266_SendString ( FunctionalState enumEnUnvarnishTx, char * pStr, u32 ulStrLength, ENUM_ID_NO_TypeDef ucId )
{
	char cStr [20];
	bool bRet = false;
	
		
	if ( enumEnUnvarnishTx )
	{
		macESP8266_Usart ( "%s", pStr );
		
		bRet = true;
		
	}

	else
	{
		if ( ucId < 5 )
			sprintf ( cStr, "AT+CIPSEND=%d,%d", ucId, ulStrLength + 2 );

		else
			sprintf ( cStr, "AT+CIPSEND=%d", ulStrLength + 2 );
		
		ESP8266_Cmd ( cStr, "> ", 0, 100 );

		bRet = ESP8266_Cmd ( pStr, "SEND OK", 0, 500 );
  }
	
	return bRet;

}


/*
 * 函数名:ESP8266_ReceiveString
 * 描述  :WF-ESP8266模块接收字符串
 * 输入  :enumEnUnvarnishTx,声明是否已使能了透传模式
 * 返回  : 接收到的字符串首地址
 * 调用  :被外部调用
 */
char * ESP8266_ReceiveString ( FunctionalState enumEnUnvarnishTx )
{
	char * pRecStr = 0;
	
	
	strEsp8266_Fram_Record .InfBit .FramLength = 0;
	strEsp8266_Fram_Record .InfBit .FramFinishFlag = 0;
	
	while ( ! strEsp8266_Fram_Record .InfBit .FramFinishFlag );
	strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ] = '\0';
	
	if ( enumEnUnvarnishTx )
		pRecStr = strEsp8266_Fram_Record .Data_RX_BUF;
	
	else 
	{
		if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+IPD" ) )
			pRecStr = strEsp8266_Fram_Record .Data_RX_BUF;

	}

	return pRecStr;
	
}
4.温湿度配置与读取处理函数
/* DHT11延时函数使用DWT外设实现,因为SysTick的延时精度被设置为了10ms,不能提供us级别的延时 */

#define DHT11_DELAY_US(us)  CPU_TS_Tmr_Delay_US(us)
#define DHT11_DELAY_MS(ms)  CPU_TS_Tmr_Delay_MS(ms)


static void                           DHT11_GPIO_Config                       ( void );
static void                           DHT11_Mode_IPU                          ( void );
static void                           DHT11_Mode_Out_PP                       ( void );
static uint8_t                        DHT11_ReadByte                          ( void );


 /**
  * @brief  DHT11 初始化函数
  * @param  无
  * @retval 无
  */
void DHT11_Init ( void )
{
	DHT11_GPIO_Config ();
	
	macDHT11_Dout_1;               // 拉高GPIOB10
}


/*
 * 函数名:DHT11_GPIO_Config
 * 描述  :配置DHT11用到的I/O口
 * 输入  :无
 * 输出  :无
 */
static void DHT11_GPIO_Config ( void )
{		
	/*定义一个GPIO_InitTypeDef类型的结构体*/
	GPIO_InitTypeDef GPIO_InitStructure;

	
	/*开启macDHT11_Dout_GPIO_PORT的外设时钟*/
  macDHT11_Dout_SCK_APBxClock_FUN ( macDHT11_Dout_GPIO_CLK, ENABLE );	

	/*选择要控制的macDHT11_Dout_GPIO_PORT引脚*/															   
  	GPIO_InitStructure.GPIO_Pin = macDHT11_Dout_GPIO_PIN;	

	/*设置引脚模式为通用推挽输出*/
  	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;   

	/*设置引脚速率为50MHz */   
  	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

	/*调用库函数,初始化macDHT11_Dout_GPIO_PORT*/
  	GPIO_Init ( macDHT11_Dout_GPIO_PORT, &GPIO_InitStructure );		  
	
}


/*
 * 函数名:DHT11_Mode_IPU
 * 描述  :使DHT11-DATA引脚变为上拉输入模式
 * 输入  :无
 * 输出  :无
 */
static void DHT11_Mode_IPU(void)
{
 	  GPIO_InitTypeDef GPIO_InitStructure;

	  	/*选择要控制的macDHT11_Dout_GPIO_PORT引脚*/	
	  GPIO_InitStructure.GPIO_Pin = macDHT11_Dout_GPIO_PIN;

	   /*设置引脚模式为浮空输入模式*/ 
	  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU ; 

	  /*调用库函数,初始化macDHT11_Dout_GPIO_PORT*/
	  GPIO_Init(macDHT11_Dout_GPIO_PORT, &GPIO_InitStructure);	 
	
}


/*
 * 函数名:DHT11_Mode_Out_PP
 * 描述  :使DHT11-DATA引脚变为推挽输出模式
 * 输入  :无
 * 输出  :无
 */
static void DHT11_Mode_Out_PP(void)
{
 	GPIO_InitTypeDef GPIO_InitStructure;

	 	/*选择要控制的macDHT11_Dout_GPIO_PORT引脚*/															   
  	GPIO_InitStructure.GPIO_Pin = macDHT11_Dout_GPIO_PIN;	

	/*设置引脚模式为通用推挽输出*/
  	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;   

	/*设置引脚速率为50MHz */   
  	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

	/*调用库函数,初始化macDHT11_Dout_GPIO_PORT*/
  	GPIO_Init(macDHT11_Dout_GPIO_PORT, &GPIO_InitStructure);	 	 
	
}


/* 
 * 从DHT11读取一个字节,MSB先行
 */
static uint8_t DHT11_ReadByte ( void )
{
	uint8_t i, temp=0;
	

	for(i=0;i<8;i++)    
	{	 
		/*每bit以50us低电平标置开始,轮询直到从机发出 的50us 低电平 结束*/  
		while(macDHT11_Dout_IN()==Bit_RESET);

		/*DHT11 以26~28us的高电平表示“0”,以70us高电平表示“1”,
		 *通过检测 x us后的电平即可区别这两个状 ,x 即下面的延时 
		 */
		DHT11_DELAY_US(40); //延时x us 这个延时需要大于数据0持续的时间即可	   	  

		if(macDHT11_Dout_IN()==Bit_SET)/* x us后仍为高电平表示数据“1” */
		{
			/* 等待数据1的高电平结束 */
			while(macDHT11_Dout_IN()==Bit_SET);

			temp|=(uint8_t)(0x01<<(7-i));  //把第7-i位置1,MSB先行 
		}
		else	 // x us后为低电平表示数据“0”
		{			   
			temp&=(uint8_t)~(0x01<<(7-i)); //把第7-i位置0,MSB先行
		}
	}
	
	return temp;
	
}

/*
 * 一次完整的数据传输为40bit,高位先出
 * 8bit 湿度整数 + 8bit 湿度小数 + 8bit 温度整数 + 8bit 温度小数 + 8bit 校验和 
 */
uint8_t DHT11_Read_TempAndHumidity(DHT11_Data_TypeDef *DHT11_Data)		  
{  

	/*输出模式*/
	DHT11_Mode_Out_PP();
	/*主机拉低*/
	macDHT11_Dout_0;
	/*延时18ms*/
	DHT11_DELAY_MS(18);

	/*总线拉高 主机延时30us*/
	macDHT11_Dout_1; 

	DHT11_DELAY_US(30);   //延时30us

	/*主机设为输入 判断从机响应信号*/ 
	DHT11_Mode_IPU();

	/*判断从机是否有低电平响应信号 如不响应则跳出,响应则向下运行*/   
	if(macDHT11_Dout_IN()==Bit_RESET)     
	{
		/*轮询直到从机发出 的80us 低电平 响应信号结束*/  
		while(macDHT11_Dout_IN()==Bit_RESET);

		/*轮询直到从机发出的 80us 高电平 标置信号结束*/
		while(macDHT11_Dout_IN()==Bit_SET);
		
		/*开始接收数据*/   
		DHT11_Data->humi_int= DHT11_ReadByte();

		DHT11_Data->humi_deci= DHT11_ReadByte();

		DHT11_Data->temp_int= DHT11_ReadByte();

		DHT11_Data->temp_deci= DHT11_ReadByte();

		DHT11_Data->check_sum= DHT11_ReadByte();


		/*读取结束,引脚改为输出模式*/
		DHT11_Mode_Out_PP();
		/*主机拉高*/
		macDHT11_Dout_1;
	
		/*检查读取的数据是否正确*/
		if(DHT11_Data->check_sum == DHT11_Data->humi_int + DHT11_Data->humi_deci + DHT11_Data->temp_int+ DHT11_Data->temp_deci)
			return SUCCESS;
		else 
			return ERROR;
	}
	
	else
		return ERROR;
	
}

5.串口重定向输出函数
#include "common.h"
#include "stm32f10x.h"
#include <stdarg.h>



static char *                 itoa                                ( int value, char * string, int radix );



/*
 * 函数名:USART2_printf
 * 描述  :格式化输出,类似于C库中的printf,但这里没有用到C库
 * 输入  :-USARTx 串口通道,这里只用到了串口2,即USART2
 *		     -Data   要发送到串口的内容的指针
 *			   -...    其他参数
 * 输出  :无
 * 返回  :无 
 * 调用  :外部调用
 *         典型应用USART2_printf( USART2, "\r\n this is a demo \r\n" );
 *            		 USART2_printf( USART2, "\r\n %d \r\n", i );
 *            		 USART2_printf( USART2, "\r\n %s \r\n", j );
 */
void USART_printf ( USART_TypeDef * USARTx, char * Data, ... )
{
	const char *s;
	int d;   
	char buf[16];

	
	va_list ap;
	va_start(ap, Data);

	while ( * Data != 0 )     // 判断是否到达字符串结束符
	{				                          
		if ( * Data == 0x5c )  //'\'
		{									  
			switch ( *++Data )
			{
				case 'r':							          //回车符
				USART_SendData(USARTx, 0x0d);
				Data ++;
				break;

				case 'n':							          //换行符
				USART_SendData(USARTx, 0x0a);	
				Data ++;
				break;

				default:
				Data ++;
				break;
			}			 
		}
		
		else if ( * Data == '%')
		{									  //
			switch ( *++Data )
			{				
				case 's':										  //字符串
				s = va_arg(ap, const char *);
				
				for ( ; *s; s++) 
				{
					USART_SendData(USARTx,*s);
					while( USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET );
				}
				
				Data++;
				
				break;

				case 'd':			
					//十进制
				d = va_arg(ap, int);
				
				itoa(d, buf, 10);
				
				for (s = buf; *s; s++) 
				{
					USART_SendData(USARTx,*s);
					while( USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET );
				}
				
				Data++;
				
				break;
				
				default:
				Data++;
				
				break;
				
			}		 
		}
		
		else USART_SendData(USARTx, *Data++);
		
		while ( USART_GetFlagStatus ( USARTx, USART_FLAG_TXE ) == RESET );
		
	}
}


/*
 * 函数名:itoa
 * 描述  :将整形数据转换成字符串
 * 输入  :-radix =10 表示10进制,其他结果为0
 *         -value 要转换的整形数
 *         -buf 转换后的字符串
 *         -radix = 10
 * 输出  :无
 * 返回  :无
 * 调用  :被USART2_printf()调用
 */
static char * itoa( int value, char *string, int radix )
{
	int     i, d;
	int     flag = 0;
	char    *ptr = string;

	/* This implementation only works for decimal numbers. */
	if (radix != 10)
	{
		*ptr = 0;
		return string;
	}

	if (!value)
	{
		*ptr++ = 0x30;
		*ptr = 0;
		return string;
	}

	/* if this is a negative value insert the minus sign. */
	if (value < 0)
	{
		*ptr++ = '-';

		/* Make the value positive. */
		value *= -1;
		
	}

	for (i = 10000; i > 0; i /= 10)
	{
		d = value / i;

		if (d || flag)
		{
			*ptr++ = (char)(d + 0x30);
			value -= (d * i);
			flag = 1;
		}
	}

	/* Null terminate the string. */
	*ptr = 0;

	return string;

} /* NCL_Itoa */



五、运行演示

STM32+WIFI+阿里云实现温湿度采集、继电器远程控制文章来源地址https://www.toymoban.com/news/detail-827694.html

到了这里,关于STM32+WIFI+阿里云MQTT温湿度与继电器远程控制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32--ESP8266物联网WIFI模块(贝壳物联)--温湿度数据上传服务器显示

    本文适用于STM32F103C8T6等MCU,其他MCU可以移植,完整资源见文末链接 一、简介 随着移动物联网的发展,各场景下对于物联控制、数据上传、远程控制的诉求也越来越多,基于此乐鑫科技推出了便宜好用性价比极高的wifi物联模块——ESP8266,话不多少我们先来看看这个神奇的模

    2024年02月08日
    浏览(49)
  • stm32毕设分享 Stm32 WIFI智能家居温湿度和烟雾检测系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月02日
    浏览(109)
  • (Onenet)STM32L+BC20+MQTT协议传输温湿度,ADC,电压,GPS数据到Onenet物联网平台

    1、材料准备 准备以下材料 2、设备连接 2.1 插入物联网卡 首先把BC20核心板从开发板上拆下来 然后将物联卡放置在BC20核心板内 物联卡放置完成将BC20核心板重新插入到开发板内(注意不要弄错方向) 同时接入天线 2.2 连接ST-Link仿真器 用3条杜邦线接入STM32L的 DIO、GND、CLK中 另

    2024年02月15日
    浏览(37)
  • 【物联网毕业设计】 单片机WIFI智能家居温湿度与烟雾检测系统 - Stm32 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2023年04月21日
    浏览(134)
  • 嵌入式项目分享 Stm32 WIFI智能家居温湿度和烟雾检测系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月16日
    浏览(140)
  • 单片机项目分享 Stm32 WIFI智能家居温湿度和烟雾检测系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(62)
  • 通信工程毕设 Stm32 WIFI智能家居温湿度和烟雾检测系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月02日
    浏览(58)
  • STM32+ESP8266+APP连接阿里云监测环境温湿度系列笔记1:阿里云物联网平台配置及数据上传

            在数据传递过程中阿里云物联网平台相当于服务器,ESP8266为客户端,通过路由器连接服务器时需要在物联网平台创建设备,具体过程如下: 1. 首先 在物联网平台创建公共实例,并点击进入, 图1 2.可见设备接入物联网平台的整体流程如图2中红色方框所示, 接下

    2024年02月04日
    浏览(55)
  • STM32日历读取与温湿度显示

    STM32的 RTC 外设(Real Time Clock),实质是一个掉电后还继续运行的定时器。 掉电: 读取STM32F103C8T6 内部的时钟(年月日时分秒),日历(星期x),1秒周期,通过串口输出到PC上位机 1、初始化 RTC 外设; 2、设置时间以及添加配置标志; 3、获取当前时间; 1、定义时间结构体,包含

    2024年02月20日
    浏览(38)
  • 基于stm32温湿度采集平台开发

    随着现代社会的高速发展,越来越多的科学技术被应用于农业生产领域。在温湿度大棚中对温湿度、二氧化碳浓度等外部参数的实时准确的测量和调节更是保证农业高效生产的重要前提。 本次课程设计中实现了一个基丁 STM32F103VET6的智能温湿度检测系统,目的是实现温湿度的

    2024年02月02日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包