机器学习---HMM前向、后向和维特比算法的计算

这篇具有很好参考价值的文章主要介绍了机器学习---HMM前向、后向和维特比算法的计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. HMM

import numpy as np


# In[15]:


class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a in A]) * B[i][
                        indexOfO]  # 递推()
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' % (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # 求和终止
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]   #代表a1(3)
        print(P)
    def backward(self, Q, V, A, B, O, PI):  # 后向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列对应的索引
            for i in range(N):
                betas[i][t] = np.dot(np.multiply(A[i], [b[indexOfO] for b in B]), [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print('beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' % (realT, realI, realI, realT + 1, realT + 1),
                      end='')
                for j in range(N):
                    print("%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO], betas[j][t + 1]), end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(np.multiply(PI, [b[indexOfO] for b in B]), [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print("%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]), end="")
        print("0=%f" % P)

    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t+1
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                realI = i+1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f'%(realI, realI, realI, PI[0][i], B[i][indexOfO], deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])) * B[i][indexOfO]
                    print('delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'%(realT, realI, realT-1, realI, realI, realT, np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])), B[i][indexOfO], deltas[i][t]))
                    psis[i][t] = np.argmax(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A]))
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' % (realT, realI, realT-1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M-1] = np.argmax([delta[M-1] for delta in deltas])
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M-1]+1))
        for t in range(M-2, -1, -1):
            I[0][t] = psis[int(I[0][t+1])][t+1]
            print('i%d=psis%d(i%d)=%d' % (t+1, t+2, t+2, I[0][t]+1))
        print(I)

if __name__ == '__main__':
    Q = [1, 2, 3]
    V = ['红', '白']
    A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
    B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
    # O = ['红', '白', '红', '红', '白', '红', '白', '白']
    O = ['红', '白', '红', '白']    #例子
    PI = [[0.2, 0.4, 0.4]]
    HMM = HiddenMarkov()
#    HMM.forward(Q, V, A, B, O, PI)
    HMM.backward(Q, V, A, B, O, PI)
#     HMM.viterbi(Q, V, A, B, O, PI)

隐马尔可夫模型是一个统计模型,用于描述由隐藏的状态序列和对应的观测序列组成的系统。在这

个模型中,隐藏的状态是无法直接观测到的,而只能通过观测序列来进行推断。

前向算法(Forward Algorithm):前向算法用于计算在给定观测序列下每个时间步长处于特定状态

的概率。前向算法利用动态规划的思想,通过递推计算每个时间步的前向概率。前向概率

(alpha)的计算公式为:alpha[t][j] = sum(alpha[t-1][i] * A[i][j] * B[j][O[t]]) for i in range(N)

其中,alpha[t][j]表示在时间步t处于状态j的概率,A[i][j]表示从状态i转移到状态j的概率,B[j]

[O[t]]表示在状态j下观测到序列中的第t个观测的概率。

后向算法(Backward Algorithm):后向算法用于计算在给定观测序列下每个时间步从特定状态开始

的概率。后向算法同样利用动态规划的思想,通过递推计算每个时间步的后向概率。后向概率

(beta)的计算公式为: beta[t][i] = sum(A[i][j] * B[j][O[t+1]] * beta[t+1][j]) for j in range(N),其

中,beta[t][i]表示在时间步t从状态i开始的概率,A[i][j]表示从状态i转移到状态j的概率,B[j][O[t+1]]

表示在状态j下观测到序列中的第t+1个观测的概率,beta[t+1][j]表示在时间步t+1处于状态j的概率。

维特比算法(Viterbi Algorithm):维特比算法用于找到在给定观测序列下最可能的隐藏状态序列。

维特比算法利用动态规划的思想,通过递推计算每个时间步的最大概率和对应的状态。维特比算法

中使用的两个变量是delta和psi,分别表示到达某个状态的最大概率和之前的最优状态。 delta[t][j]

= max(delta[t-1][i] * A[i][j] * B[j][O[t]]) for i in range(N)

psi[t][j] = argmax(delta[t-1][i] * A[i][j]) for i in range(N)

其中,delta[t][j]表示在时间步t到达状态j的最大概率,psi[t][j]表示在时间步t到达状态j时的最优前一

个状态,argmax表示取最大值的索引。

机器学习---HMM前向、后向和维特比算法的计算,机器学习,机器学习,算法,python

import numpy as np


# In[15]:


class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a in A]) * B[i][
                        indexOfO]  # 递推()
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' % (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # 求和终止
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]   #代表a1(3)
        print(P)
    def backward(self, Q, V, A, B, O, PI):  # 后向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列对应的索引
            for i in range(N):
                betas[i][t] = np.dot(np.multiply(A[i], [b[indexOfO] for b in B]), [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print('beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' % (realT, realI, realI, realT + 1, realT + 1),
                      end='')
                for j in range(N):
                    print("%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO], betas[j][t + 1]), end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(np.multiply(PI, [b[indexOfO] for b in B]), [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print("%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]), end="")
        print("0=%f" % P)

    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t+1
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                realI = i+1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f'%(realI, realI, realI, PI[0][i], B[i][indexOfO], deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])) * B[i][indexOfO]
                    print('delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'%(realT, realI, realT-1, realI, realI, realT, np.max(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A])), B[i][indexOfO], deltas[i][t]))
                    psis[i][t] = np.argmax(np.multiply([delta[t-1] for delta in deltas], [a[i] for a in A]))
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' % (realT, realI, realT-1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M-1] = np.argmax([delta[M-1] for delta in deltas])
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M-1]+1))
        for t in range(M-2, -1, -1):
            I[0][t] = psis[int(I[0][t+1])][t+1]
            print('i%d=psis%d(i%d)=%d' % (t+1, t+2, t+2, I[0][t]+1))
        print(I)

if __name__ == '__main__':
    Q = [1, 2, 3]
    V = ['红', '白']
    A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
    B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
    # O = ['红', '白', '红', '红', '白', '红', '白', '白']
    O = ['红', '白', '红', '白']    #例子
    PI = [[0.2, 0.4, 0.4]]
    HMM = HiddenMarkov()
#    HMM.forward(Q, V, A, B, O, PI)
#    HMM.backward(Q, V, A, B, O, PI)
    HMM.viterbi(Q, V, A, B, O, PI)

前向算法(Forward Algorithm):前向算法用于计算给定观测序列下每个时刻的前向概率

(alpha),表示在当前时刻观测到特定状态的概率。通过递推计算,利用前一时刻的前向概率和

状态转移概率、发射概率来计算当前时刻的前向概率。数学公式:alpha[i][t] = PI[t][i] * B[i]

[indexOfO],其中alpha[i][t]表示在时刻t处于状态i的前向概率,PI[t][i]表示初始状态概率,B[i]

[indexOfO]表示在状态i观测到观测序列的概率。

后向算法(Backward Algorithm):后向算法用于计算给定观测序列下每个时刻的后向概率

(beta),表示从当前时刻开始,在未来时刻观测到特定状态的概率。通过递推计算,利用后一时

刻的后向概率和状态转移概率、发射概率来计算当前时刻的后向概率。数学公式:beta[i][t] = Σ(A[i]

[j] * B[j][indexOfO] * beta[j][t+1]),其中beta[i][t]表示在时刻t处于状态i的后向概率,A[i][j]表示状态i

转移到状态j的概率,B[j][indexOfO]表示在状态j观测到观测序列的概率。

维特比算法(Viterbi Algorithm):维特比算法用于找到给定观测序列下最可能的隐藏状态序列,

即根据观测序列推断出最可能的隐藏状态路径。通过动态规划的方式,利用状态转移概率、发射概

率和初始状态概率,计算每个时刻每个状态的最大概率值和对应的前一个状态。数学公式:delta[i]

[t] = max(delta[t-1][j] * A[j][i]) * B[i][indexOfO],其中delta[i][t]表示在时刻t处于状态i的最大概率值,

A[j][i]表示状态j转移到状态i的概率,B[i][indexOfO]表示在状态i观测到观测序列的概率。

机器学习---HMM前向、后向和维特比算法的计算,机器学习,机器学习,算法,python文章来源地址https://www.toymoban.com/news/detail-828389.html

到了这里,关于机器学习---HMM前向、后向和维特比算法的计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 神经网络基础-神经网络补充概念-26-前向和反向传播

    前向传播(Forward Propagation): 前向传播是神经网络中的正向计算过程,用于从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。在前向传播过程中,我们按以下步骤进行: 输入数据:将输入数据传递给输入层。 加权求和:对每个神经元的输入进行加权

    2024年02月12日
    浏览(11)
  • 前向差分、后向差分、中心差分精度,matlab仿真

    前向差分、后向差分、中心差分精度,matlab仿真

    前向差分公式:(1) 泰勒展开为:(2) 由泰勒展开可以推出 f \\\'(x) : (3) 由(3)可以知道右边第一项是前向差分,而其他项的和是函数f \\\'(x)与前向差分的误差,用o(x)表示,得出:(4) 因为误差项为o(x),o(x)主要项为Δx/2。 而Δx为一阶,所以前向差分为一阶精度。 同理可以推出后

    2024年02月01日
    浏览(8)
  • 神经网络中的前向传播(Forward Propagation)和后向传播(Backward Propagation)

    有时候会搞混这两个概念。什么是前向传播?不是只有后向传播吗?后向传播好像是用来更新模型参数的,前向传播是什么东西? 带着疑问再次梳理一遍: 前向传播是神经网络进行预测的过程。在这个过程中,输入数据沿着神经网络从输入层经过隐藏层(如果有的话)最终

    2024年02月20日
    浏览(9)
  • 加密数据安全性的两大安全护盾-前向安全性与后向安全性详解

    在数字安全的世界里,加密技术是用来保护数据不被未经授权访问的重要机制。然而,即使使用了最强的加密算法,也不能保证永远是安全的。攻击者可能会在未来某个时间点获得了解密密钥,从而能够解密拦截的密文。为了解决这个问题,密码学引入了前向安全性(Forwar

    2024年02月04日
    浏览(9)
  • 李宏毅机器学习笔记:结构学习,HMM,CRF

    李宏毅机器学习笔记:结构学习,HMM,CRF

    什么是Seq2Seq问题呢?简单来说,就是输入是一个序列,输出也是一个序列。输入和输出的序列可以相等,也可以不相等。在本文中,可以先假设输入输出序列相等。 这里用了一个通俗易懂的例子来解释HMM模型,POS tagging,词性标注。 PN表示专有名词Proper Noun V表示动词 D 定冠

    2024年02月11日
    浏览(10)
  • 机器学习基础 HMM模型(隐马尔科夫)

    机器学习基础 HMM模型(隐马尔科夫)

    推荐参考:https://juejin.cn/post/6844903891834781703 在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名。 马尔科

    2024年02月02日
    浏览(14)
  • 【机器学习】马尔可夫链与隐马尔可夫模型(HMM)

    【机器学习】马尔可夫链与隐马尔可夫模型(HMM)

            马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(A.A.Markov)得名。描述的是状态空间中经过从一个状态到另一个状态的转换的 随机过程 。该过程要求具备“无记忆”的性质: 下一状态的概率分布只能

    2024年02月13日
    浏览(5)
  • .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)

    .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)

    概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图

    2024年01月22日
    浏览(5)
  • 【机器学习300问】71、神经网络中前向传播和反向传播是什么?

    【机器学习300问】71、神经网络中前向传播和反向传播是什么?

            我之前写了一篇有关计算图如何帮助人们理解反向传播的文章,那为什么我还要写这篇文章呢?是因为我又学习了一个新的方法来可视化前向传播和反向传播,我想把两种方法总结在一起,方便我自己后续的复习。对了顺便附上往期文章的链接方便回顾: 【机器

    2024年04月17日
    浏览(7)
  • 【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

    【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

    本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻

    2024年02月19日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包