AI-基于Langchain-Chatchat和chatglm3-6b部署私有本地知识库

这篇具有很好参考价值的文章主要介绍了AI-基于Langchain-Chatchat和chatglm3-6b部署私有本地知识库。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考

手把手教你搭建本地知识库问答AI机器人
LangChain-Chatchat:基于LangChain和ChatGLM2-6B构建本地离线私有化知识库
在家庭私有云上部署体验语言模型chatglm3-6b,打造私人助理
手把手教大家在本地运行ChatGLM3-6B大模型(一)

概述

自从去年GPT模型火爆以来,降低了很多个人和企业进入人工智能领域的门槛,对于大模型尤其是开源的大模型国内应该比较受关注和期待,毕竟高额的成本也能将不少人阻挡在门外,其次,大家都希望在产品中集成LLM的能力,结合业务来落地智能化应用,提升产品的竞争力,最直接的应用就是构建知识库。

下面汇总了一下之前介绍的有关构建知识库相关的文章和视频,包含了开源和闭源多种不同的解决方案,从使用情况来看,因为都是开源产品,所以在架构和功能完整性上可能都不够全面,因为一直在持续的迭代过程。

如果是站在一个中小企业的角度,去选型一款比较符合企业构建本地知识库需求的产品来评估,从以下介绍的开源产品目前的实现效果和未来规划目标来看,个人觉得Quivr从设计上来讲更加符合应用需求,前提是增加企业已有文档库、数据库纳入知识库的能力,扩展Danswer提高的功能,完善并丰富对于开源或者闭源模型的支持(目前暂时支持较弱)尤其是对于中文支持不错的国产模型比如ChatGLM2等,另外一种方案就是今天介绍的LangChain-Chatchat刚好可以与Quivr互补,其对于模型的支持很丰富,但对于业务端的属性支持较弱,只支持单个用户单个知识库,不能建立多个知识库通过权限来隔离。

部署安装

环境准备

我使用的硬件和模型信息:

显卡:一块英伟达的A6000

LLM:开源的chatglm3-6b

向量模型:开源的jina-embedding-l-en-v1

向量数据库:开源的milvus

原理和流程图

langchain-chatchat chatglm3,人工智能,langchain

一键启动

一键启动聊天机器人
安装完成,输入以下命令启动

$ python startup.py -a

看到下面画面后,表示正常启动了
langchain-chatchat chatglm3,人工智能,langchain

启动WebAPI 服务

在线调用API服务的情况下,直接执执行 server/api.py 脚本启动 API 服务;

python server/api.py

启动 API 服务后,可访问 localhost:7861 或 {API 所在服务器 IP}:7861 FastAPI 自动生成的 docs 进行接口查看与测试。

FastAPI docs 界面
langchain-chatchat chatglm3,人工智能,langchain

启动WebUI服务

在浏览器输入聊天机器人地址:http://127.0.0.1:8561
langchain-chatchat chatglm3,人工智能,langchain

Docker部署

如果想快速部署 LangChain-Chatchat 产品来体验,可以选择Docker一键部署的方式,比较简单,只需要先安装Docker 容器,在Unbuntu环境中如何安装 Docker & Docker Compose,可以参考文章 《Quivr 基于GPT和开源LLMs构建本地知识库 (更新篇)》中的3.2节。这里不过多赘述。 Windows安装Docker更简单。

Docker镜像使用的版本一般会稍微滞后一些,如果想快速体验最新的版本按前面开发模式部署会更合适一点。

LangChain-Chatchat项目使用的 Docker 镜像地址是:

http://registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.0

docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.0
  • 该版本镜像大小 33.9GB,使用 v0.2.0,以 nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 为基础镜像
  • 该版本内置一个 embedding 模型:m3e-large,内置 chatglm2-6b-32k
  • 该版本目标为方便一键部署使用,请确保您已经在Linux发行版上安装了NVIDIA驱动程序
  • 请注意,您不需要在主机系统上安装CUDA工具包,但需要安装 NVIDIA Driver 以及 NVIDIA Container Toolkit,请参考安装指南
  • 首次拉取和启动均需要一定时间,首次启动时请参照下图使用 docker logs -f 查看日志
  • 如遇到启动过程卡在 Waiting… 步骤,建议使用 docker exec -it bash 进入 /logs/ 目录查看对应阶段日志

知识库管理

切换到知识库管理后,可以查看和删除已创建知识库、新增知识库,也可以对知识库进行文件增减。
langchain-chatchat chatglm3,人工智能,langchain

新建知识库:点击“新建知识库”,输入知识库名称和简介,选择向量数据库和模型,再点击新建即可。

langchain-chatchat chatglm3,人工智能,langchain

上传文件到知识库:选择已创建知识库,选择上传文件,点击“添加文件到知识库”

langchain-chatchat chatglm3,人工智能,langchain

创建好知识库后,可以切换菜单到“对话”,选择对话模式为“知识库问答”,并选择要对话的知识库,即可开启和特定知识库聊天。

常见问题

本地知识库怎么微调?回答不准确

知识库不用微调,不准确需要分析定位原因,是数据本身问题还是ai问题,ai层面可以考虑增加问题改写步骤(看我前两天分享),换更好的大模型,向量切分方面的优化等文章来源地址https://www.toymoban.com/news/detail-828400.html

到了这里,关于AI-基于Langchain-Chatchat和chatglm3-6b部署私有本地知识库的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embe

    LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embe

    LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embedding模型m3e等+多种TextSplitter分词器)、安装(镜像部署【AutoDL云平台/Docker镜像】,离线私有部署+支持RTX3090 ,支持FAISS/Milvus/PGVector向量库, 基于

    2024年02月08日
    浏览(13)
  • LangChain-Chatchat 开源知识库来了

    LangChain-Chatchat 开源知识库来了

    LangChain-Chatchat 是基于 ChatGLM 等大语言模型与 LangChain 等应用框架实现,开源、可离线部署的 RAG 检索增强生成大模型知识库项目。最新版本为 v0.2.10,目前已收获 26.7k Stars,非常不错的一个开源知识库项目。 项目地址:https://github.com/chatchat-space/Langchain-Chatchat 顾名思义,LangC

    2024年04月17日
    浏览(5)
  • LangChain-Chatchat学习资料-Windows开发部署

    LangChain-Chatchat学习资料-Windows开发部署

    1.LacnChain-Chatchat项目 本人使用的是Windows10专业版22H2版本,已经安装了Python3.10,CUDA11.8版本,miniconda3。 硬件采用联想R9000P,AMD R7 5800H,16G内存,RTX3060 6G。 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再

    2024年02月11日
    浏览(7)
  • Langchain-Chatchat大语言模型本地知识库的踩坑、部署、使用

    Langchain-Chatchat大语言模型本地知识库的踩坑、部署、使用

    Langchain-Chatchat是一个基于ChatGLM大语言模型与Langchain应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型的本地知识库问答应用项目。 GitHub: https://github.com/chatchat-space/Langchain-Chatchat 本项目实现原理如下图所示,过程包括加载文件 - 读取文本 - 文本分割 - 文本向量化

    2024年02月04日
    浏览(31)
  • 离线AI聊天清华大模型(ChatGLM3)本地搭建

    离线AI聊天清华大模型(ChatGLM3)本地搭建

    在特定的情况下,要保证信息安全的同时还能享受到AIGC大模型带来的乐趣和功能,那么,离线部署就能帮助到你,最起码,它是一个真正可用的方案。 大模型本身清华的 (ChatGLM3),为的是对中文支持友好,另外就是我也很看好它,毕竟一直在优化自己的模型,提升模型的质量

    2024年02月02日
    浏览(11)
  • 离线AI聊天清华大模型(ChatGLM3)本地搭建指南

    随着人工智能技术的飞速发展,聊天机器人成为了一个热门的研究领域。清华大学研发的ChatGLM3模型,作为其中的佼佼者,为开发者提供了强大的自然语言处理能力。本文将指导您如何在本地搭建ChatGLM3模型,实现离线AI聊天功能。 一、前置准备 在开始搭建之前,您需要准备

    2024年02月19日
    浏览(10)
  • 部署一个本地的聊天机器人-基于ChatGLM3

    部署一个本地的聊天机器人-基于ChatGLM3

    理论上来说 8G及以上显存的英伟达GPU 笔者的设备 RTX 4060Ti (16G显存) Archlinux Python 3.10.10 ChatGLM3 代码版本 33953b119e7 ChatGLM3 是智谱AI几周前才开源的模型, 6B大小的话只是个人用的话算是完全免费的. 这个相比之前的2感觉是prompt优化了一些(不过也复杂了一些), 可以直接用来让机器人

    2024年02月05日
    浏览(6)
  • 使用 Sealos 将 ChatGLM3 接入 FastGPT,打造完全私有化 AI 客服

    使用 Sealos 将 ChatGLM3 接入 FastGPT,打造完全私有化 AI 客服

    FastGPT 是一款 专为客服问答场景而定制的 开箱即用的 AI 知识库问答系统。该系统具备可视化工作流功能,允许用户灵活地设计复杂的问答流程,几乎能满足各种客服需求。 在国内市场环境下,离线部署对于企业客户尤为重要。由于数据安全和隐私保护的考虑,企业通常不愿

    2024年02月06日
    浏览(8)
  • 英特尔集成显卡+ChatGLM3大语言模型的企业本地AI知识库部署

    英特尔集成显卡+ChatGLM3大语言模型的企业本地AI知识库部署

    作者: 英特尔创新大使 刘力 英特尔开发者技术推广经理 李翊玮     在当今的企业环境中,信息的快速获取和处理对于企业的成功至关重要。为了满足这一需求,我们可以将RAG技术与企业本地知识库相结合,以提供实时的、自动生成的信息处理和决策支持。这将有助于企业

    2024年04月26日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包