机器学习-逻辑回归

这篇具有很好参考价值的文章主要介绍了机器学习-逻辑回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Logistic Regreession
逻辑回归:解决分类问题
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
逻辑回归既可以看做是回归算法,也可以看做是分类算法通常作为分类算法用,只可以解决二分类问题
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
Sigmoid函数
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

import numpy as np
import matplotlib.pyplot as plt
def sigmoid(t):
    return 1. / (1. + np.exp(-t))
x = np.linspace(-10, 10, 500)

plt.plot(x, sigmoid(x))
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
代码实现

import numpy as np
from .metrics import accuracy_score

class LogisticRegression:

    def __init__(self):
        """初始化Logistic Regression模型"""
        self.coef_ = None
        self.intercept_ = None
        self._theta = None

    def _sigmoid(self, t):
        return 1. / (1. + np.exp(-t))

    def fit(self, X_train, y_train, eta=0.01, n_iters=1e4):
        """根据训练数据集X_train, y_train, 使用梯度下降法训练Logistic Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        def J(theta, X_b, y):
            y_hat = self._sigmoid(X_b.dot(theta))
            try:
                return - np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y)
            except:
                return float('inf')

        def dJ(theta, X_b, y):
            return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) / len(y)

        def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):

            theta = initial_theta
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = dJ(theta, X_b, y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                    break

                cur_iter += 1

            return theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def predict_proba(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果概率向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
        return self._sigmoid(X_b.dot(self._theta))

    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        proba = self.predict_proba(X_predict)
        return np.array(proba >= 0.5, dtype='int')

    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""

        y_predict = self.predict(X_test)
        return accuracy_score(y_test, y_predict)

    def __repr__(self):
        return "LogisticRegression()"

实现逻辑回归
加载数据

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y<2,:2]
y = y[y<2]
plt.scatter(X[y==0,0], X[y==0,1], color="red")
plt.scatter(X[y==1,0], X[y==1,1], color="blue")
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
使用逻辑回归

from playML.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)
from playML.LogisticRegression import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

决策边界

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()

X = iris.data
y = iris.target

X = X[y<2,:2]
y = y[y<2]
plt.scatter(X[y==0,0], X[y==0,1], color="red")
plt.scatter(X[y==1,0], X[y==1,1], color="blue")
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

from playML.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)
from playML.LogisticRegression import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
def x2(x1):
    return (-log_reg.coef_[0] * x1 - log_reg.intercept_) / log_reg.coef_[1]
x1_plot = np.linspace(4, 8, 1000)
x2_plot = x2(x1_plot)
plt.scatter(X[y==0,0], X[y==0,1], color="red")
plt.scatter(X[y==1,0], X[y==1,1], color="blue")
plt.plot(x1_plot, x2_plot)
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

plt.scatter(X_test[y_test==0,0], X_test[y_test==0,1], color="red")
plt.scatter(X_test[y_test==1,0], X_test[y_test==1,1], color="blue")
plt.plot(x1_plot, x2_plot)
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
不规则的决策边界的绘制方法

def plot_decision_boundary(model, axis):
    
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]

    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
    
plot_decision_boundary(log_reg, axis=[4, 7.5, 1.5, 4.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
knn决策边界

from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_train)
plot_decision_boundary(knn_clf, axis=[4, 7.5, 1.5, 4.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

knn_clf_all = KNeighborsClassifier()
knn_clf_all.fit(iris.data[:,:2], iris.target)
plot_decision_boundary(knn_clf_all, axis=[4, 8, 1.5, 4.5])
plt.scatter(iris.data[iris.target==0,0], iris.data[iris.target==0,1])
plt.scatter(iris.data[iris.target==1,0], iris.data[iris.target==1,1])
plt.scatter(iris.data[iris.target==2,0], iris.data[iris.target==2,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

knn_clf_all = KNeighborsClassifier(n_neighbors=50)
knn_clf_all.fit(iris.data[:,:2], iris.target)

plot_decision_boundary(knn_clf_all, axis=[4, 8, 1.5, 4.5])
plt.scatter(iris.data[iris.target==0,0], iris.data[iris.target==0,1])
plt.scatter(iris.data[iris.target==1,0], iris.data[iris.target==1,1])
plt.scatter(iris.data[iris.target==2,0], iris.data[iris.target==2,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

在逻辑回归中使用多项式特征

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
生成测试用例

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
X = np.random.normal(0, 1, size=(200, 2))
y = np.array((X[:,0]**2+X[:,1]**2)<1.5, dtype='int')
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
使用逻辑回归

from playML.LogisticRegression import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
绘图

def plot_decision_boundary(model, axis):
    
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]

    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
plot_decision_boundary(log_reg, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
使用管道 使用多项式

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

def PolynomialLogisticRegression(degree):
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),
        ('std_scaler', StandardScaler()),
        ('log_reg', LogisticRegression())
    ])
poly_log_reg = PolynomialLogisticRegression(degree=2)
poly_log_reg.fit(X, y)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

plot_decision_boundary(poly_log_reg, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

poly_log_reg2 = PolynomialLogisticRegression(degree=20)
poly_log_reg2.fit(X, y)
plot_decision_boundary(poly_log_reg2, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
逻辑回归中使用正则化
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

scikit-learn中的逻辑回归

生成测试用例

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
X = np.random.normal(0, 1, size=(200, 2))
y = np.array((X[:,0]**2+X[:,1])<1.5, dtype='int')
for _ in range(20):
    y[np.random.randint(200)] = 1
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
分数据

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

逻辑回归

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

def plot_decision_boundary(model, axis):
    
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]

    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
plot_decision_boundary(log_reg, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
使用多项式项

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

def PolynomialLogisticRegression(degree):
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),
        ('std_scaler', StandardScaler()),
        ('log_reg', LogisticRegression())
    ])
poly_log_reg = PolynomialLogisticRegression(degree=2)
poly_log_reg.fit(X_train, y_train)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

plot_decision_boundary(poly_log_reg, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

poly_log_reg2 = PolynomialLogisticRegression(degree=20)
poly_log_reg2.fit(X_train, y_train)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

plot_decision_boundary(poly_log_reg2, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
正则化

def PolynomialLogisticRegression(degree, C):
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),
        ('std_scaler', StandardScaler()),
        ('log_reg', LogisticRegression(C=C))
    ])

poly_log_reg3 = PolynomialLogisticRegression(degree=20, C=0.1)
poly_log_reg3.fit(X_train, y_train)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

plot_decision_boundary(poly_log_reg3, axis=[-4, 4, -4, 4])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

def PolynomialLogisticRegression(degree, C, penalty='l2'):
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),
        ('std_scaler', StandardScaler()),
        ('log_reg', LogisticRegression(C=C, penalty=penalty))
    ])

poly_log_reg4 = PolynomialLogisticRegression(degree=20, C=0.1, penalty='l1')
poly_log_reg4.fit(X_train, y_train)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

OvR与OvO

解决多分类问题

OVR(One vs Rest)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
n个类别就进行n次分类,选择分类得分最高的

OVO(One vs One)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:,:2]
y = iris.target
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

训练

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

默认为ovr
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

def plot_decision_boundary(model, axis):
    
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]

    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
plot_decision_boundary(log_reg, axis=[4, 8.5, 1.5, 4.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
ovo

log_reg2 = LogisticRegression(multi_class="multinomial", solver="newton-cg")
log_reg2.fit(X_train, y_train)
log_reg2.score(X_test, y_test)
plot_decision_boundary(log_reg2, axis=[4, 8.5, 1.5, 4.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能
使用所有数据

X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
log_reg.score(X_test, y_test)
log_reg2 = LogisticRegression(multi_class="multinomial", solver="newton-cg")
log_reg2.fit(X_train, y_train)
log_reg2.score(X_test, y_test)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能

OvO and OvR

from sklearn.multiclass import OneVsRestClassifier

ovr = OneVsRestClassifier(log_reg)
ovr.fit(X_train, y_train)
ovr.score(X_test, y_test)
from sklearn.multiclass import OneVsOneClassifier

ovo = OneVsOneClassifier(log_reg)
ovo.fit(X_train, y_train)
ovo.score(X_test, y_test)

机器学习-逻辑回归,人工智能,机器学习,逻辑回归,人工智能文章来源地址https://www.toymoban.com/news/detail-828492.html

到了这里,关于机器学习-逻辑回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降

    考虑二分类问题,其中每个样本由一个特征向量表示。 直观理解:将特征向量 x text{x} x 映射到一个实数 w T x text{w}^Ttext{x} w T x 一个正的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于正类的可能性较高。 一个负的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于负类的可能性

    2024年02月09日
    浏览(34)
  • 机器学习_数据升维_多项式回归代码_保险案例数据说明_补充_均匀分布_标准正太分布---人工智能工作笔记0038

    然后我们再来看一下官网注意上面这个旧的,现在2023-05-26 17:26:31..我去看了新的官网, scikit-learn已经添加了很多新功能,     我们说polynomial多项式回归其实是对数据,进行 升维对吧,从更多角度去看待问题,这样 提高模型的准确度. 其实y=w0x0+w1x1.. 这里就是提高了这个x的个数对吧

    2024年02月06日
    浏览(36)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(63)
  • 人工智能|机器学习——基于机器学习的舌苔检测

    基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。 传统中医的舌诊主要依赖

    2024年02月22日
    浏览(50)
  • 人工智能与机器学习

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:《机器学习》 ​ ​ ☞什么是人工智能、机器学习、深度学习 人工智能这个概念诞生于1956年的达特茅斯

    2024年02月02日
    浏览(45)
  • 【机器学习】人工智能概述

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.人工智能概述 1.1 机器学习、人工智能与深度学习 1.2 机器学习、深度学习能做些什么

    2024年02月09日
    浏览(44)
  • 机器学习--人工智能概述

    入门人工智能,了解人工智能是什么。为啥发展起来,用途是什么,是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程 机器学习定义以及应用场景 监督学习,无监督学习 监督学习中的分类、回归特点 知道机器学习的开发流程 人工智能在现实生活中的应用

    2024年01月19日
    浏览(44)
  • 人工智能与机器人|机器学习

    原文链接: https://mp.weixin.qq.com/s/PB_n8woxdsWPtrmL8BbehA 机器学习下包含神经网络、深度学习等,他们之间的关系表示如图2-7所示。 图2-7 关系图 那么什么是机器学习、深度学习、他们的区别又是什么呢? 2.7.1 什么是机器学习? 机器学习是 人工智能 (AI) 和计算机科学的一个分支,

    2024年02月06日
    浏览(65)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(42)
  • 人工智能与开源机器学习框架

    链接:华为机考原题 TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个针对神经网络和深度学习的强大工具集,能够帮助开发人员构建和训练各种机器学习模型。 TensorFlow的基本概念包括: 张量(Tensor):张量是TensorFlow中的核心数据结构,它表示多维数

    2024年02月22日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包