Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ

这篇具有很好参考价值的文章主要介绍了Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

完全背包

题目
文章讲解
视频讲解

完全背包和0-1背包的区别在于:物品是否可以重复使用

思路:对于完全背包问题,内层循环的遍历方式应该是从weight[i]开始一直遍历到V,而不是从V到weight[i]。这样可以确保每种物品可以被选择多次放入背包,从而求解完全背包问题。

对于完全背包问题,需要对内层循环进行调整,以确保每种物品可以被选择多次放入背包。

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt(); // 研究材料种类
        int V = sc.nextInt(); // 行李箱空间

        int[] values = new int[N]; // 物品价值
        int[] weight = new int[N]; // 物品重量

        // 依次输入每种物品的重量和价值
        for (int i = 0; i < N; i++) {
            weight[i] = sc.nextInt(); // 物品重量
            values[i] = sc.nextInt(); // 物品价值
        }

        int[] dp = new int[V + 1]; // 动态规划数组
        for (int i = 0; i < N; i++) {
            for (int j = weight[i]; j <= V; j++) {
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + values[i]); // 动态规划状态转移方程
            }
        }
        System.out.println(dp[V]); // 输出结果
    }
}

一维0-1背包求解法示例如下

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt(); // 研究材料种类
        int V = sc.nextInt(); // 行李箱空间

        int[] values = new int[N]; // 物品价值
        int[] weight = new int[N]; // 物品重量

        // 依次输入每种物品的重量和价值
        for (int i = 0; i < N; i++) {
            weight[i] = sc.nextInt(); // 物品重量
            values[i] = sc.nextInt(); // 物品价值
        }

        int[] dp = new int[V + 1]; // 动态规划数组
        for (int i = 0; i < N; i++) {
            for (int j = V; j >= weight[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + values[i]); // 动态规划状态转移方程
            }
        }
        System.out.println(dp[V]); // 输出结果
    }
}

对比:

  • 完全背包:
    Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ,二月红,动态规划,算法

  • 0-1背包:
    Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ,二月红,动态规划,算法

518. 零钱兑换 II

题目
文章讲解
视频讲解

思路:

  1. dp[j]:凑成总金额j的货币组合数为dp[j]
  2. 递推公式:dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加
  3. 初始化需要注意 dp[0]=1;
class Solution {
    public int change(int amount, int[] coins) {

        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
}

377. 组合总和 Ⅳ

题目
文章讲解
视频讲解

思路:

如果求组合数就是外层for循环遍历物品,内层for遍历背包;
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
文章来源地址https://www.toymoban.com/news/detail-828501.html

class Solution {
    public int combinationSum4(int[] nums, int target) {

        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 0; i <= target; i++) {
            for (int j = 0; j < nums.length; j++) {
                if (i >= nums[j])
                    dp[i] += dp[i - nums[j]];
            }
        }
        return dp[target];

    }
}

到了这里,关于Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包