深度学习之pytorch实现逻辑斯蒂回归

这篇具有很好参考价值的文章主要介绍了深度学习之pytorch实现逻辑斯蒂回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

解决的问题

logistic 适用于分类问题,这里案例( y为0和1 ,0和 1 分别代表一类)
于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性

深度学习之pytorch实现逻辑斯蒂回归,机器学习,深度学习,回归,人工智能,logistic回归,逻辑斯蒂,pytorch

数学公式

logiatic函数

深度学习之pytorch实现逻辑斯蒂回归,机器学习,深度学习,回归,人工智能,logistic回归,逻辑斯蒂,pytorch

损失值

深度学习之pytorch实现逻辑斯蒂回归,机器学习,深度学习,回归,人工智能,logistic回归,逻辑斯蒂,pytorch

代码

也是用y=wx+b的模型来举例,之前的输出y属于实数集合R,现在我们要输出一个一个概率,也就是在区间[0,1]之间。我们就想到需要找出一个映射,把我们之前的输出集合R映射到区间[0,1],他就是函数Sigma,这样我们就轻松的实现了实数集合到0~1之间的映射

import  torch
import  torch.nn.functional as F
import  numpy as np
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))#这里需要把原来的输出y传给sigmoid,即实现的区间的映射
        return  y_pred

model = LinearModel()

criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

x = np.linspace(0,10,200)
x_t = torch.Tensor(x).view(200,1)#将数据变成一个二百行一列的矩阵
y_t = model(x_t)
y = y_t.data.numpy()

plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.ylabel('probablility of pass')
plt.xlabel('hours')
plt.grid()#画出网格
plt.show()

与线性回归代码的区别

数据

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

#线性回归
#x_data = torch.Tensor([[1.0],[2.0],[3.0]])
#y_data = torch.Tensor([[2.0],[4.0],[=6.0]])

损失值

criterion = torch.nn.BCELoss(size_average=False)
#线性回归
#criterion = torch.nn.MSELoss(size_average=False)

构造回归的函数

import torch.nn.functional as F
y_pred = F.sigmoid(self.linear(x))

#线性回归
#y_pred = self.linear(x)

结果分析

部分结果数据
964 1.1182234287261963
965 1.1176648139953613
966 1.1171066761016846
967 1.1165491342544556
968 1.1159923076629639
969 1.1154361963272095
970 1.1148808002471924
971 1.1143261194229126
972 1.113771915435791
973 1.1132186651229858
974 1.1126658916473389
975 1.1121137142181396
976 1.1115622520446777
977 1.1110115051269531
978 1.1104612350463867
979 1.1099116802215576
980 1.1093629598617554
981 1.1088148355484009
982 1.1082673072814941
983 1.1077203750610352
984 1.1071741580963135
985 1.106628656387329
986 1.106083631515503
987 1.105539321899414
988 1.104995846748352
989 1.1044528484344482
990 1.1039104461669922
991 1.1033687591552734
992 1.1028276681900024
993 1.1022872924804688
994 1.1017472743988037
995 1.101208209991455
996 1.1006698608398438
997 1.1001317501068115
998 1.0995947122573853
999 1.0990580320358276

深度学习之pytorch实现逻辑斯蒂回归,机器学习,深度学习,回归,人工智能,logistic回归,逻辑斯蒂,pytorch文章来源地址https://www.toymoban.com/news/detail-828924.html

到了这里,关于深度学习之pytorch实现逻辑斯蒂回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习之pytorch实现线性回归

    作用j进行线性变换 Linear(1, 1) : 表示一维输入,一维输出 优化器对象 9961 tensor(4.0927e-12, grad_fn=) 9962 tensor(4.0927e-12, grad_fn=) 9963 tensor(4.0927e-12, grad_fn=) 9964 tensor(4.0927e-12, grad_fn=) 9965 tensor(4.0927e-12, grad_fn=) 9966 tensor(4.0927e-12, grad_fn=) 9967 tensor(4.0927e-12, grad_fn=) 9968 tensor(4.0927e-12, grad_fn

    2024年02月19日
    浏览(38)
  • 机器学习7:pytorch的逻辑回归

            逻辑回归模型是处理分类问题的最常见机器学习模型之一。 二项式逻辑 回归只是逻辑回归模型的

    2024年02月07日
    浏览(40)
  • pytorch深度学习逻辑回归 logistic regression

    结果  

    2024年02月16日
    浏览(57)
  • 机器学习之回归算法-逻辑回归

    1.1、概念 是一种名为“回归”的线性分类器,是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。 1.2、按预测标签的数据类型分 连续型变量: 通过线性回归方程z,线性回归使用输入的特征矩阵X来输出一组连续型的标签值y_pred,以完成各种预测连续型变

    2024年02月04日
    浏览(34)
  • 深度学习 -- pytorch 计算图与动态图机制 autograd与逻辑回归模型

    pytorch中的动态图机制是pytorch这门框架的优势所在,阅读本篇博客可以使我们对动态图机制以及静态图机制有更直观的理解,同时在博客的后半部分有关于逻辑回归的知识点,并且使用pytorch中张量以及张量的自动求导进行构建逻辑回归模型。 计算图是用来描述运算的有向无环

    2024年02月01日
    浏览(45)
  • 机器学习之逻辑回归模型

            逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是一种机器学习算法,属于分类和预测算法中的一种,主要用于解决二分类问题。逻辑回归通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,

    2024年02月09日
    浏览(49)
  • 机器学习之逻辑回归

    1.1 监督学习 1.1.1 回归(线性回归) 1.1.1.1 描述 线性回归模型公式: 多元线性关系:一个通过特征的的线性组合来进行预测的函数 其中,h(x)是因变量,x1、x2、…、xn是自变量,o1、o2、…、bn是回归系数。回归系数表示自变量对因变量的影响程度,可以通过最小二乘法来求解

    2023年04月13日
    浏览(40)
  • Python | 机器学习之逻辑回归

    🌈个人主页: Sarapines Programmer 🔥 系列专栏:《人工智能奇遇记》 🔖墨香寄清辞:诗馀墨痕深,梦漫星辰寂。 曲径通幽意犹在,剑指苍穹气势立。 目录结构 1. 机器学习之逻辑回归概念 1.1 机器学习 1.2 逻辑回归 2. 逻辑回归 2.1 实验目的 2.2 实验准备 2.3 实验题目 2.4 实验内容

    2024年02月05日
    浏览(48)
  • 机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】

    目录 前言 一、什么是线性回归 二、什么是逻辑回归 三、基于Python 和 Scikit-learn 库实现线性回归 示例代码:  使用线性回归来预测房价: 四、基于Python 和 Scikit-learn 库实现逻辑回归 五、总结  线性回归的优缺点总结: 逻辑回归(Logistic Regression)是一种常用的分类算法,具有

    2024年04月13日
    浏览(45)
  • 初识人工智能,一文读懂机器学习之逻辑回归知识文集(1)

    🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论⭐收藏 🔎 人工智能领域知识 🔎 链接 专栏 人工智能专业知识学习一 人工智能专栏 人

    2024年01月23日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包